
SQIPrime & SILBE: New isogeny based
cryptographic protocols

Master thesis defense

Max Duparc

Supervision: Dr. Tako Boris Fouotsa
Professor: Serge Vaudenay

February 19, 2024

Max Duparc (EPFL) SQIPrime & SILBE February 19, 2024 1 / 28



Conclusion

Outline

We present two new isogenies based cryptosystems:

SQIPrime: A post-quantum identification scheme that relies on isogenies of big
prime degree.

SILBE: A post-quantum Updatable Public Key Encryption (UPKE) scheme based
on the generalised lollipop attacks over M-SIDH.

▶ Both protocols make extensive usage of the multiple isogeny representations used in
cryptography.
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Background Kernel representation

Elliptic curves

Weierstrass equations:

E : y 2 = x3 + Ax + B

with 4A3 + 27B2 ̸= 0.

Abelian groups.

j-invariant:

j(E) = 1728
4A3

4A3 + 27B2

characterises isomorphism.

P

R

[2]P

▶ ≃ 70% of all TLS connections use ECDH.
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Background Kernel representation

Isogenies

Isogenies

Isogenies are rational maps ϕ : E → E ′ that preserve the group structure.

▶ Have finite kernel.

ϕ−−−−−−−−−−−→

E : y 2 = x3 − 3x + 3 E ′ : y 2 = x3 + 5x + 6

ϕ : (x , y) →
(
x2 + 6x + 1

x − 7
,
x2 − x − 4

(x − 7)2
y

)
of degree 2 in F13
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Background Kernel representation

Efficient representations

Natural examples

Scalar maps:
[n] : E → E

Frobenius isogeny:
π : E → E (p)

(x , y) 7→ (xp, yp)

Efficient isogeny representation

Let ϕ : E → E ′ be an isogeny. An efficient representation of ϕ is:

D: data of size polylog(deg ϕ) that uniquely define ϕ.

A: a universal algorithm that for any P ∈ E :

A(D,P) 7→ ϕ(P)

in time polylog(deg ϕ).
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Background Kernel representation

Kernel representation

Theorem

Let G a finite subgroup of E , it uniquely
defines

ϕ : E → E/G

an isogeny of degree |G | up to isomorphism.

Isogeny isomorphism

ϕ : E → F and ψ : E ′ → F ′ are
isomorphic if

E F

E ′ F ′

ϕ

κι

ψ

Any isogeny ϕ : E → E ′ induces a dual isogeny ϕ̂ : E ′ → E :

ϕ ◦ ϕ̂ = ϕ̂ ◦ ϕ = [deg(ϕ)]

Given E [n] = ker([n]), we have that E [n] = Zn × Zn for any n coprime to p.

Vélu’s formulas

Given G ⊂ E a subgroup, we can compute ϕ : E → E/G in time O(|G |).
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Background Kernel representation

Kernel representation

Kernel representation

Let ϕ : E → E ′ be a cyclic isogeny of smooth degree d . Its kernel representation is:

K ∈ E [d ] s.t. ⟨K⟩ = ker(ϕ).

KernelToIsogeny

E E1 E2 · · · E ′
ϕ1 ϕ2 ϕ3 ϕn

ϕ

with deg(ϕ) =
∏n

i=1 pi and deg(ϕi ) = pi .
Drawbacks:

Only efficient on smooth isogenies.

Advantages:

Compact.

Very efficient

Evaluate all points.
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Background Ideal representation

Supersingularity

Theorem

Let E be an elliptic curve defined over Fp.

End(E) is an ordera of a complex quadratic field Q(
√
D).

▶ E is an ordinary curve.

End(E) is a maximal order of a quaternion algebra Bp,∞.
▶ E is a supersingular curve.

afull rank lattices that are also subrings

Supersingular curves are SUPER nice:

All are defined in Fp2 up to isomorphism.

E(Fp2) ∼= Zp±1 × Zp±1.

Supersingularity is preserved by isogenies.

All supersingular curves are isogeneous.
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Background Ideal representation

Supersingular isogeny graphs

Figure: Supersingular isogeny graphs G2109, G3109 and G5109
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Background Ideal representation

Deuring Correspondence

E E ′

OE OE ′

ϕ

Iϕ

curves

orders

Supersingular j-invariants on Fp2 Maximal orders in Bp,∞

j(E) OE

ϕ ◦ ψ IψIϕ
deg(ϕ) n(Iϕ)

ϕ̂ Iϕ
ψ∗ϕ [Iψ]∗Iϕ = 1

n(Iψ)
Iψ(Iψ ∩ Iϕ)

γ ∈ End(E) OEγ

Iϕ =
{
α ∈ OE

∣∣ α(ker(ϕ)) = 0
}

ker(ϕI ) =
{
P ∈ E

∣∣ α(P) = 0 ∀α ∈ I
}
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Background Ideal representation

Ideal representation

Handful of special curves have known OE (ex: j(E0) = 1728).

Ideal representation

Let ϕ : E1 → E2 be an isogeny of degree d . Its ideal representation is:

J the ideal corresponding to ϕ, O0, ρi : E0 → Ei and Ii .

EvalTorsion

EvalTorsion:

1. Find γ ∈ O0 s.t. O0γ = I1JI2.

2. Evaluate γ ◦ ρ̂1(P).
3. return ϕJ(P) := [(d1d2)

−1]ρ2 ◦ γ ◦ ρ̂1(P) mod N.

deg(ρi ) = di and P ∈ E [N].

E0

E1 E2
J

ρ1 ρ2

I1 I2

ϕJ

Drawbacks:

Need knowledge of endomorphism
ring.

Can only evaluate points of order
coprime to d1d2.

Advantages:

Works on any degree.

Relatively efficient.

Enables new computations.
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Background HD representation

Kani’s Lemma

Let A,B,A′,B ′ be abelian vari-
eties with commutative diagram:

A B

A′ B ′

f

g g′

f ′

deg(f ) = deg(f ′)

deg(g) = deg(g ′)

Kani’s Lemma

1. The following map is an isogeny such that
deg(F ) = deg(f )+ deg(g)

F :=

(
f̃ −g̃
g ′ f ′

)
: B × A′ → A× B ′

2. Its kernel is

ker(F ) =
{(

f (P),−g(P)
)∣∣∣ P ∈ A[deg(F )]

}

HDKernelToIsogeny

Given B a basis of ker(ϕ) with ϕ : A → A′ a B-smooth dim k isogeny of degree d , we
can compute ϕ in time O(Bk log(d)).
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Background HD representation

HD representation

HD representation

Let ϕ : E → E ′ be an isogeny of degree d , its HD representation is:(
P,Q, ϕ(P), ϕ(Q)

)
with ⟨P,Q⟩ = E [N], N smooth, coprime to d with N ≥

√
d .

EvalKani

EvalKani:

1. Find {ai}gi=1 s.t.
∑g

i=1 a
2
i = N − deg(ϕ).

2. Compute αg depending on g .

3. Compute F Kani’s isogeny in dim 2g .

4. Evaluate ϕ using F .

with ⟨P,Q⟩ = E [N] and knowing ϕ(P), ϕ(Q).

E g F g

E g F g

ϕg

αg

ϕg

αg

α2 :=

(
a1 −a2
a2 a1

)
Drawbacks:

Relatively slow

Advantages:

Works for any degree.

Works for any points.
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Background HD representation

Isogeny representation (TL;DR)

Kernel Ideal HD

Isogeny smooth any any
Evaluation any points coprime to d1d2 any points
Ad. info none endomorphism ring none
Speed quick resonably quick slow

Table: Comparison of different isogeny representation

Ideal

KerHD

−→ Immediate transformations
99K Technical transformations
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SQIPrime

Table of Contents

1 Background
Kernel representation
Ideal representation
HD representation

2 SQIPrime
SQI Family
Main Ideas

3 SILBE
Context
Main Ideas
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SQIPrime SQI Family

SQIPrime Intro

SQIPrime: A post-quantum identification scheme that relies on prime isogenies.

▶ A derivative of SQISignHD, itself a variant of SQISign.

▶ Expand its usage of Kani’s Lemma.

Prover Verifierpp

Verify

pk

commit

challenge

response

The SQISign Family relies on the following
problems:

Endomorphism problem: E → OE ✗

Isogeny walk problem: E ,E ′ → ϕ ✗

Linking ideal problem: OE ,OE ′ → I ✓
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SQIPrime SQI Family

SQISign & SQISignHD

SQISign :

E0 E1

EA E2

ψ

φτ

σ

σ long (≃ p4) smooth.

Given in kernel
representation.

2f T |(p2 − 1) T ≥ p5/4.

+ Compact. (177 B)
− Slow signature.
+ Quick verification.
− Hard to scale.
− Ad-Hoc security assump-
tions.

Prover Verifierp

σ ok?

EA

E1

φ

σ

SQISignHD :

E0 E1

EA E2

τ τ ′

ψ′

ψ

φ

σ

σ short (≃ √p) prime.

Given in HD
representation.

p = 2λ3λ
′
f − 1.

+ Very compact. (109 B)
+ Quick signature.
− Long verification.
+ Easy to scale.
+ Simpler security assump-
tions.
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SQIPrime Main Ideas

SQIPrime (The changes compare to SQISignHD)

Problems:

1. How do we make τ and ψ prime?

2. How do we make φ prime?

3. How to verify σ?

Solutions:

1. Use Kani’s Lemma in dim 2 to split
γ ∈ End(E0).

2. Sample C1 ∈ EA[q].

3. Use κ = σ̂ ◦ φ with Kani’s Lemma in
dim 4 and split in the middle.

A

E 2
1 × E 2

A E 2
1 × E 2

A
F

F1 F̃2

▶ More complex in reality.

E0 E1

EA E2

τ τ ′

ψ′

ψ

φ

σ

Prover Verifierp

σ ok?

EA

E1

φ

σ
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SQIPrime Main Ideas

SQIPrime (in its prime)

p = 22λf −1 s.t. p+1 = 2Nq, with q ≃ 2λ.

KeyGen:

pk : EA and special basis ⟨R, S⟩ of
EA[q].
sk : τ : E0 → EA and Iτ .

Commit:
com : E1.
sec : ψ : E0 → E1 and Iψ .

Challenge: C1 ∈ EA[q] with
EA[q] = ⟨C1,C2⟩.
Response: Find Iσ and evaluate
κ = σ ◦ φ over R,S ,C2.

Verify: Checks:

κ valid isogeny.
ker(κ) ∩ E [q] = ker(φ)

▶ Same security as SQISignHD.

E0 E1

EA E2

ψ

τ

φ

σ
κ

Prover Verifierp

κ(C1)
?
= 0

κ(C2)
?
̸= 0

EA, ⟨R,S⟩

E1

C1

κ(R), κ(S), κ(C2)
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SQIPrime Main Ideas

Parameters

SQIPrime-friendly prime are easy to find:

p + 1 = 22·120 · 167 · 397 ≃ 2256.01

p − 1 = 2 · 3 · 7 · 11 · 41 · 5683514583831199 · 500402127095125861 · q

q = 2174422729538275144428922863792468335219 ≃ 2130.67

SQISign SQISignHD SQIPrime

prime 2f T |(p2 − 1) and T = DT ′ p + 1 = 2λ3λ
′
f p = 22λf − 1 and p − 1 = 2Nq

Key gen 2• isogenies 2λ isogenies (2, 2)-isogenies

Commitment T ′ isogenies 2λ isogenies (2, 2)-isogenies

Challenge D isogenies 3λ
′
isogenies C1 ∈ EA[q]

Response Kernel representation HD rep. HD representation
Verification 2• isogenies (2, 2, 2, 2)-isogenies (2, 2, 2, 2)-isogenies

Table: Comparison of the SQISign Family
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SILBE Context

SILBE intro

SILBE: A post-quantum Updatable Public Key Encryption (UPKE) scheme based on the
generalised lollipop attacks over M-SIDH.

▶ First isogeny-based UPKE not based on group actions.

▶ Inspired by SETA adapted to the generalised lollipop.

UPKE

An UPKE scheme is given 6 PPT(λ) with Setup(1λ) → pp:

KG(pp)
$−→ (sk, pk)

Enc(pk,m)
$−→ ct

Dec(sk, ct)−→m

UG(pp)
$−→ µ

Upk(pk, µ) −→ pk′

Usk(sk, µ) −→ sk′

Ensures:
Correctness.

Asynchronous key update.

Forward Security.

Post-Compromise Security.

(sk1, pk1) (sk3, pk3)

(sk0, pk0) (sk2, pk2) (sk4, pk4)
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SILBE Context

M-SIDH

M-SIDH public parameters:

p = ABf − 1 prime with
A =

∏nA
i=1 pi and

B =
∏nB

j=1 qj .

⟨PA,QA⟩ = E [A]

⟨PB ,QB⟩ = E [B]

E EA

EB EK

ϕA

ϕB ψB

ψA

µ2(N) = {n ∈ ZN |n2 = 1}

M-SIDH

Alice(pp) black(pp)

sA ←$ ZA, α←$ µ2(B) sB ←$ ZB , β ←$ µ2(A)

RA ← PA + [sA]QA RB ← PB + [sB ]QB

ϕA, EA ← KernelToIso.(E , RA) ϕB , EB ← KernelToIso.(E , RB )

SA ← [α]ϕA(PB ) SB ← [β]ϕB (PA)

TA ← [α]ϕA(QB ) TB ← [β]ϕB (QA)

EA, SA,TA

EB , SB ,TB

UA ← SB + [sA]TB UB ← SA + [sB ]TA

ψA, EK ← KernelToIso.(EB ,UA) ψB , EK ← KernelToIso.
(
EA,UB

)
K ← KDF

(
j(EK )

)
K ← KDF

(
j(EK )

)

Supersingular isogeny problem with MASKED torsion point information

Let ϕ : E → E ′ be an isogeny of degree d , ⟨P,Q⟩ = E [N] with N coprime to d , m ∈ µ2(N).

P,Q, [m]ϕ(P), [m]ϕ(Q)
?−→ ϕ
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SILBE Main Ideas

SILBE (spelled out)

KeyGen:

Alice computes ρ0 : E0 → EA long.
Finds sk := ϕA : E0 → EA short
prime, pk = EA.

Enc:
Bob computes ϕ : EA → EB , mask
using m.

Dec:
Alice computes generalized lollipop

ψ = π∗(ϕB ◦ ϕA) ◦ ϕA ◦ ϕB
Use Kani’s Lemma in dim 4.

UG:
Sample random ⟨K⟩ = ker(ρ1).

Upk:

Bob constructs ρ1 : EA → E ′A.

Usk:
Alice computes ρ1 : EA → EA.
Finds sk′ := ϕ′A : EA → E ′A.

▶ FAR more complex in reality.

E
(p)
A E

(p)
B

E0

EA EB

E ′A

π ππ

ρ0

ϕA

▶ Isogeny with masked torsion points
problem over random curves hard
=⇒ SILBE OW-qCPA-U secure.
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SILBE Main Ideas

Parameters

p = 3βNf + 1 with N =
∏n

i=1 pi such that:

N ≥ 3β
√
p log(p).

Nt =
∏n

i=t pi ≥ 3β/2 =⇒ n − t ≥ λ.

λ β N f n log2(p)

128 2043 5× 7× 11× · · · × 6863 1298 881 13013

192 3229 5× 7× 11× · · · × 10789 1790 1312 20538

256 4461 5× 7× 11× · · · × 14879 16706 1741 28346

Table: Parameters for SILBE

Kani’s Lemma over such prime is not practical.

Decryption requires 75λ5 log(λ)4 operations.

▶ λ = 128 =⇒ 260 operations.
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Conclusion

Future directions

E0 E1

EA E2

ψ

τ

φ

σκ

E
(p)
A E

(p)
B

E0

EA EB

E ′A

π∗ϕA

ϕA

π π

ϕB

π∗ϕB

π ψ

ρ
ϕ′A

SQIPrime:

Work on an implementation.

Further consideration on distribution
over multiple Gℓp .

SILBE:

See if its principles are usable over
FESTA.

Happy to discuss your comments and questions !!!

▶ e-prints coming soon.
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Endomorphism ring in cryptography

1. There are handfull of curves such that we know the correspondence for all p.
▶ If p = 3 mod 4, j(E0) = 1728 is supersingular and

O0 = Z+ iZ+
i+ j

2
Z+

1 + ij

2
Z

with i : (x , y)→ (−x ,
√
−1y) and j = π.

2. Knowing End(E) ∼= OE = ⟨α1, · · · , α4⟩ with an efficient representation of all αi .
▶ We can evaluate ANY γ ∈ End(E).

3. For any isogeny ρ : E → E ′, knowing OE =⇒ knowing OE ′ .

4. For any smooth isogeny ρ : E → E ′, knowing OE =⇒ computing Iρ is easy.
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SIDH

SIDH public parameters:

p = ℓ
eA
A ℓ

eB
B f − 1 a prime.

⟨PA,QA⟩ = E [ℓ
eA
A ]

⟨PB ,QB⟩ = E [ℓ
eB
B ].

E EA

EB EK

ϕA

ϕB ψB

ψA

SIDH

Alice(pp) Bob(pp)

sA ←$ Z
ℓ
eA
A

sB ←$ Z
ℓ
eB
B

RA ← PA + [sA]QA RB ← PB + [sB ]QB

ϕA, EA ← KernelToIso.(E , RA) ϕB , EB ← KernelToIso.(E , RB )

SA ← ϕA(PB ),TA ← ϕA(QB ) SB ← ϕB (PA),TB ← ϕB (QA)

EA, SA,TA

EB , SB ,TB

UA ← SB + [sA]TB UB ← SA + [sB ]TA

ψA, EK ← KernelToIso.(EB ,UA) ψB , EK ← KernelToIso.(E ,UB )

K ← KDF
(
j(EK )

)
K ← KDF

(
j(EK )

)

Supersingular isogeny problem with torsion point information

Let ϕ : E → E ′ be an isogeny of degree d , ⟨P,Q⟩ = E [N] with N coprime to d .

P,Q, ϕ(P), ϕ(Q)
?−→ ϕ
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A prime new Commitment and KeyGen

Three main ideas:

1. Use Kani’s Lemma to split isogenies.

F : E 2
0 → E × E ′

ker(F ) =
{(

[ℓ](P), γ(P)
)∣∣∣ P ∈ E0[N]

}
deg(τ) and deg(ρ) coprime.

2. Finding γ ∈ End(E0) with deg(γ) = N is
easy if N > p.

3. Finding Iτ from γ is easy.

EA E0

E0 E ′

τ̂

ρ
γ

τ̂∗ρ

ρ∗τ̂

E0 EA

τ

γ

ρ

Commit & KeyGen:

Sample ℓ ≃ √
p prime and find γ,

deg(γ) = ℓ(22λ − ℓ) with 22λ ≃ p.

Get F and Iτ .

Compute a special basis over EA in
KeyGen.

▶ EA distribution is computationally
indistinguishable from uniform.
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SQIPrime [2]

p = 22λf − 1

KeyGen:

pk : EA and special basis ⟨R, S⟩.
sk : τ : E0 → EA and Iτ .

Commit:
com : E1.
sec : ψ : E0 → E1 and Iψ .

How do we make φ prime ?

How to verify ?

E0 E1

EA E2

τ

ψ

φ

σ

Prover Verifierp

σ ok?

EA, ⟨R, S⟩

E1

φ

σ
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The real challenge

Let ⟨C1⟩ = ker(φ) with deg(φ) = q ≃ 2λ

Problems:

1. How does the Prover compute Iφ?

2. How does the Prover evaluate σ?

3. How does the Verifier know E2?

E0 E1

EA E2

ψ

τ

φ

σ

Solutions:

1. Use special basis.

ker(φ) = ⟨[a]P + [b]Q⟩ =⇒ Iφ = [a+ bι]∗IP

ι(P) = Q.

2. Evaluate κ = σ ◦ φ instead.

3. Check ker(κ) ∩ EA[q] = ker(φ).

E0 E1

EA E2

ψ

τ

φ

σ
κ
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SQIPrime [3]

p = 22λf − 1 s.t. p+1 = 2Nq, with q ≃ 2λ

prime.

KeyGen:

pk : EA and special basis ⟨R, S⟩ of
EA[q].
sk : τ : E0 → EA and Iτ .

Commit:
com : E1.
sec : ψ : E0 → E1 and Iψ .

Challenge: C1 ∈ EA[q] with
ker(φ) = ⟨C1⟩.
Response: Find Iσ and send κ = σ ◦ φ
in HD representation.

How to verify ?

E0 E1

EA E2

ψ

τ

φ

σ
κ

Prover Verifierp

κ ok?

EA, ⟨R, S⟩

E1

C1

κ
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Efficient verification

Like SQISignHD, we use Kani’s Lemma in
dimension 4.

κ too long deg(κ) ≃ p log(p) > 22λ.

▶ Have to split F = F2 ◦ F1 and evaluate at the
middle with deg(Fi ) = di .

A

E 2
1 × E 2

A E 2
1 × E 2

A
F

F1 F̃2

F


0
0
X
0

 =


[a1]X
[−a2]X

Y
0

 ⇐⇒ [d2]F1


0
0
X
0

 = F̃2


[a1]X
[−a2]X

Y
0


▶ Requires sending a 3rd point C2.
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OW-PCA-U Game

GOW-PCA-U(A1,A2)

1 : i = 0

2 : Upd list = Cor list = ∅

3 : sk0, pk0
$←− KG(pp)

4 : j, st←− AOracles
1 (pk0)

5 : if j > i do return ⊥

6 : m
$←−M

7 : ct
$←− Enc(pkj,m)

8 : n←− AOracles
2 (ct, st)

9 : if IsFresh(j) do

10 : return m
?
= n

11 : return ⊥

IsFresh(j)

1 : return not j
?
∈ Cor list

Fresh Upd() → pki

1 : µ
$←− UG(1λ)

2 : ski+1
$←− Usk(ski, µ)

3 : pki+1
$←− Upk(pki, µ)

4 : i ← i + 1

5 : return pki

Given Upd(µ) → pki

1 : ski+1
$←− Usk(ski, µ)

2 : pki+1
$←− Upk(pki, µ)

3 : Upd list+ = {(i , i + 1)}
4 : i ← i + 1

5 : return pki

Corrupt(j) → skj

1 : Cor list = Cor list ∪ {j}
2 : i , k ← j

3 : while (i − 1, i) ∈ Upd list :

4 : Cor list+ = {i − 1}
5 : i ← i − 1

6 : while (k, k + 1) ∈ Upd list :

7 : Cor list+ = {k + 1}
8 : k ← k + 1

9 : return skj

Plaintext Check(m, c, j) → b

1 : if m /∈M or j > i do

2 : return ⊥
3 : else do

4 : return m
?
= Dec(skj, c)
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Lollipops attacks

[Pet17]: Petit’s original lollipop attack:

Given φ(E0[N]) of degree d .

Find θ ∈ End(E0) s.t. deg(τ) = N, τ = φ ◦ θ ◦ φ̂+ [n]

ker(τ) is known as τ |E [N] = [d ]θ|E0[N] + [n]Id.

ker(φ̂) ≃ ker(τ − [n]) ∩ E [d ].

E0

E

φφ̂

θ

Many development on lollipops:

[dQKL+20]: Improved lollipop

[FP21]: Adaptive attack over SIDH

[CV23]: Generalised lollipop:
▶ Works on M-SIDH.
▶ Requires E0 defined over Fp .

E0 E0

E ′ Eφ∗σ

σ

ω

φσ∗φ
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Security

Low walk distribution

Let ϕ : E → E ′ be an ℓh-isogeny obtained from a non-backtracking random walk over Gℓp .
Then, for all ε ∈]0, 2],

dist
{
E ′ codomain of ϕ

∣∣∣ E ′ uniform in Gℓp
}
= O(p−ε/2)

provided that h ≥ (1 + ε) logℓ(p).

Security SILBE as a PKE

The security of SILBE as an OW-PCA PKE reduces to the supersingular isogeny problem
with masked torsion point information over random curves.

Security SILBE as an UPKE

SILBE is OW-PCA secure ⇐⇒ SILBE is OW-PCA-U secure

Using [AW23], we can make of SILBE an IND-CU-CCA UPKE in the ROM.
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Encryption & Decryption

Alice knows ϕA and Bob EA,
m ∈ µ2(N).

Encryption:

Bob computes ϕ : EA → EB

deg(ϕB) = 3β

Computes
(R1
R2

)
= [m]ϕB

(PA
QA

)
with

⟨PA,QA⟩ = EA[N].
Sends EB ,R1,R2.

Decryption:

Alice computes ψ(EB [N]) as

ψ
(S
T

)
= 3β deg(ϕA)M

−1
π MϕA

π
(R1

R2

)
with

(S
T

)
= ϕB ◦ ϕA

(P0
Q0

)
Uses Kani’s Lemma in dim 4 to get

ψ(E [3β ]) = ker(ψ)[3β ] = ker(ϕ̂B)

Uses discrete log to retrieve m.

p = 3βNf + 1 with N =
n∏

i=1

pi

⟨P0,Q0⟩ = E0[N]

EA EB

E0

E
(p)
A E

(p)
B

π∗ϕA

ϕA

π π

ϕB

π∗ϕB

π ψ

ψ = π∗(ϕB ◦ ϕA) ◦ ϕA ◦ ϕB

▶ Need N > 3β deg(ϕA) ≃ 3β
√
p log(p).
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Key Update

Alice knows ϕA and Bob EA

and ⟨UA,VA⟩ = EA[3
β ]

UG: η ∈ Z3β .

Upk:

Computes ρ : EA → E ′A
ker(ρ) = ⟨UA + [η]VA⟩

Usk:
Computes ρ : EA → E ′A
ker(ρ) = ⟨UA + [η]VA⟩
Find Iρ using OEA .
Find small prime ideal Iϕ′

A
.

Use HD rep. to find OE ′
A
.

▶ More complex in reality.

EA

E0

E ′A

IϕA

ρ

Iϕ′
A

E0

EA E1 · · · Et−1 E ′A

IϕA

I1, ρ1

Iϕ′
A

It , ρt

J1
Jt−1

I2, ρ2 It−1, ρt−1

Jt
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