SQIPrime & SILBE: New isogeny based cryptographic protocols

Master thesis defense

 $\mathsf{Max} \; \mathrm{Duparc}$

Supervision: Dr. Tako Boris FOUOTSA Professor: Serge VAUDENAY

February 19, 2024

- **SQIPrime**: A post-quantum identification scheme that relies on isogenies of big prime degree.
- **SILBE**: A post-quantum Updatable Public Key Encryption (UPKE) scheme based on the generalised lollipop attacks over M-SIDH.
- Both protocols make extensive usage of the multiple isogeny representations used in cryptography.

- **SQIPrime**: A post-quantum identification scheme that relies on isogenies of big prime degree.
- **SILBE**: A post-quantum Updatable Public Key Encryption (UPKE) scheme based on the generalised lollipop attacks over M-SIDH.
- Both protocols make extensive usage of the multiple isogeny representations used in cryptography.

- **SQIPrime**: A post-quantum identification scheme that relies on isogenies of big prime degree.
- **SILBE**: A post-quantum Updatable Public Key Encryption (UPKE) scheme based on the generalised lollipop attacks over M-SIDH.
- Both protocols make extensive usage of the multiple isogeny representations used in cryptography.

- **SQIPrime**: A post-quantum identification scheme that relies on isogenies of big prime degree.
- **SILBE**: A post-quantum Updatable Public Key Encryption (UPKE) scheme based on the generalised lollipop attacks over M-SIDH.
- Both protocols make extensive usage of the multiple isogeny representations used in cryptography.

Background

Table of Contents

Background

- Kernel representation
- Ideal representation
- HD representation

2 SQIPrime

- SQI Family
- Main Ideas

3 SILBE

- Context
- Main Ideas

4 Appendix

Elliptic curves

• Weierstrass equations:

$$E: y^2 = x^3 + Ax + B$$

with $4A^3 + 27B^2 \neq 0$.

- Abelian groups.
- j-invariant:

$$j(E) = 1728 \frac{4A^3}{4A^3 + 27B^2}$$

characterises isomorphism.

Elliptic curves

• Weierstrass equations:

$$E: y^2 = x^3 + Ax + B$$

with $4A^3 + 27B^2 \neq 0$.

- Abelian groups.
- j-invariant:

$$j(E) = 1728 \frac{4A^3}{4A^3 + 27B^2}$$

characterises isomorphism.

 $\blacktriangleright~\simeq$ 70% of all TLS connections use ECDH.

Isogenies

Isogenies

Isogenies are rational maps $\phi: E \to E'$ that preserve the group structure.

Have finite kernel.

Isogenies

Isogenies

Isogenies are rational maps $\phi: E \to E'$ that preserve the group structure.

Efficient representations

Natural examples

• Scalar maps:

• Frobenius isogeny:

 $[n]: E \to E$ $\pi: E \to E^{(p)}$ $(x, y) \mapsto (x^p, y^p)$

Efficient isogeny representation

Let $\phi: E \to E'$ be an isogeny. An *efficient representation* of ϕ is:

- D: data of size polylog(deg ϕ) that uniquely define ϕ .
- \mathcal{A} : a *universal* algorithm that for any $P \in E$:

 $\mathcal{A}(D,P)\mapsto\phi(P)$

in time polylog(deg ϕ).

Efficient representations

Natural examples

• Scalar maps:

• Frobenius isogeny:

 $[n]: E \to E$ $\pi: E \to E^{(p)}$ $(x, y) \mapsto (x^{p}, y^{p})$

Efficient isogeny representation

Let $\phi: E \to E'$ be an isogeny. An *efficient representation* of ϕ is:

- D: data of size polylog(deg ϕ) that uniquely define ϕ .
- \mathcal{A} : a *universal* algorithm that for any $P \in E$:

$$\mathcal{A}(D,P)\mapsto\phi(P)$$

in time polylog(deg ϕ).

Theorem

Let G a finite subgroup of E, it uniquely defines

$$\phi: E \to E/G$$

an isogeny of degree |G| up to isomorphism.

• Any isogeny
$$\phi: E \to E'$$
 induces a dual isogeny $\widehat{\phi}: E' \to E$:

$$\phi \circ \hat{\phi} = \hat{\phi} \circ \phi = [\mathsf{deg}(\phi)]$$

• Given E[n] = ker([n]), we have that $E[n] = \mathbb{Z}_n \times \mathbb{Z}_n$ for any *n* coprime to *p*.

Vélu's formulas

Given $G \subset E$ a subgroup, we can compute $\phi: E
ightarrow E/G$ in time $\mathcal{O}(|G|).$

Theorem

Let G a finite subgroup of E, it uniquely defines

$$\phi: E \to E/G$$

an isogeny of degree |G| up to isomorphism.

• Any isogeny $\phi: E \to E'$ induces a dual isogeny $\widehat{\phi}: E' \to E$:

$$\phi \circ \hat{\phi} = \hat{\phi} \circ \phi = [\deg(\phi)]$$

• Given E[n] = ker([n]), we have that $E[n] = \mathbb{Z}_n \times \mathbb{Z}_n$ for any *n* coprime to *p*.

Vélu's formulas

Given $G \subset E$ a subgroup, we can compute $\phi : E \to E/G$ in time O(|G|).

7/28

Theorem

Let G a finite subgroup of E, it uniquely defines

$$\phi: E \to E/G$$

an isogeny of degree |G| up to isomorphism.

• Any isogeny
$$\phi: E \to E'$$
 induces a dual isogeny $\widehat{\phi}: E' \to E$:

$$\phi \circ \hat{\phi} = \hat{\phi} \circ \phi = [\deg(\phi)]$$

• Given E[n] = ker([n]), we have that $E[n] = \mathbb{Z}_n \times \mathbb{Z}_n$ for any *n* coprime to *p*.

Vélu's formulas

Given $G \subset E$ a subgroup, we can compute $\phi : E \to E/G$ in time O(|G|).

Theorem

Let G a finite subgroup of E, it uniquely defines

$$\phi: E \to E/G$$

an isogeny of degree |G| up to isomorphism.

• Any isogeny
$$\phi: E \to E'$$
 induces a dual isogeny $\widehat{\phi}: E' \to E$:

$$\phi \circ \hat{\phi} = \hat{\phi} \circ \phi = [\mathsf{deg}(\phi)]$$

• Given E[n] = ker([n]), we have that $E[n] = \mathbb{Z}_n \times \mathbb{Z}_n$ for any *n* coprime to *p*.

Vélu's formulas

Given $G \subset E$ a subgroup, we can compute $\phi : E \to E/G$ in time O(|G|).

Kernel representation

Let $\phi: E \to E'$ be a cyclic isogeny of *smooth* degree *d*. Its *kernel representation* is:

- $K \in E[d]$ s.t. $\langle K \rangle = \ker(\phi)$.
- KernelTolsogeny

with deg $(\phi) = \prod_{i=1}^{n} p_i$ and deg $(\phi_i) = p_i$.

• Only efficient on smooth isogenies.

ADVANTAGES:

- Compact.
- Very efficient
- Evaluate all points.

8/28

Kernel representation

Let $\phi: E \to E'$ be a cyclic isogeny of *smooth* degree *d*. Its *kernel representation* is:

- $K \in E[d]$ s.t. $\langle K \rangle = \ker(\phi)$.
- KernelTolsogeny

with deg $(\phi) = \prod_{i=1}^{n} p_i$ and deg $(\phi_i) = p_i$.

Drawbacks:

• Only efficient on *smooth* isogenies.

- Compact.
- Very efficient
- Evaluate all points.

Kernel representation

Let $\phi: E \to E'$ be a cyclic isogeny of *smooth* degree *d*. Its *kernel representation* is:

- $K \in E[d]$ s.t. $\langle K \rangle = \ker(\phi)$.
- KernelTolsogeny

with deg(ϕ) = $\prod_{i=1}^{n} p_i$ and deg(ϕ_i) = p_i . DRAWBACKS:

• Only efficient on *smooth* isogenies.

- Compact.
- Very efficient
- Evaluate all points.

Supersingularity

Theorem

Let *E* be an elliptic curve defined over $\overline{\mathbb{F}_p}$.

- End(*E*) is an order^a of a complex quadratic field $\mathbb{Q}(\sqrt{D})$.
 - *E* is an *ordinary* curve.
- End(E) is a maximal order of a quaternion algebra $\mathbf{B}_{p,\infty}$.
 - *E* is a *supersingular* curve.

^afull rank lattices that are also subrings

Supersingular curves are SUPER nice:

- All are defined in \mathbb{F}_{p^2} up to isomorphism.
- $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}_{p\pm 1} \times \mathbb{Z}_{p\pm 1}.$
- Supersingularity is preserved by isogenies.
- All supersingular curves are isogeneous.

Supersingularity

Theorem

Let *E* be an elliptic curve defined over $\overline{\mathbb{F}_p}$.

- End(*E*) is an order^a of a complex quadratic field $\mathbb{Q}(\sqrt{D})$.
 - *E* is an *ordinary* curve.
- End(E) is a maximal order of a quaternion algebra $\mathbf{B}_{p,\infty}$.
 - *E* is a *supersingular* curve.

^afull rank lattices that are also subrings

Supersingular curves are SUPER nice:

- All are defined in \mathbb{F}_{p^2} up to isomorphism.
- $E(\mathbb{F}_{p^2}) \cong \mathbb{Z}_{p\pm 1} \times \mathbb{Z}_{p\pm 1}$.
- Supersingularity is preserved by isogenies.
- All supersingular curves are isogeneous.

Supersingular isogeny graphs

Figure: Supersingular isogeny graphs \mathcal{G}^2_{109} , \mathcal{G}^3_{109} and \mathcal{G}^5_{109}

Deuring Correspondence

 $I_{\phi} = \left\{ \alpha \in \mathcal{O}_{E} \mid \alpha(\ker(\phi)) = 0 \right\} \qquad \qquad \ker(\phi_{I}) = \left\{ P \in E \mid \alpha(P) = 0 \ \forall \alpha \in I \right\}$

Deuring Correspondence

 $I_{\phi} = \left\{ \alpha \in \mathcal{O}_{\mathsf{E}} \middle| \ \alpha(\mathsf{ker}(\phi)) = \mathsf{0} \right\}$

 $\operatorname{ker}(\phi_I) = \big\{ P \in E \mid \alpha(P) = 0 \,\,\forall \alpha \in I \big\}$

Ideal representation

Handful of special curves have known \mathcal{O}_E (ex: $j(E_0) = 1728$).

Ideal representation

Let $\phi: E_1 \to E_2$ be an isogeny of degree *d*. Its *ideal representation* is:

- J the ideal corresponding to ϕ , \mathcal{O}_0 , $\rho_i : E_0 \to E_i$ and I_i .
- EvalTorsion

EvalTorsion:

1. Find
$$\gamma \in \mathcal{O}_0$$
 s.t. $\mathcal{O}_0 \gamma = I_1 J \overline{I_2}$.

2. Evaluate
$$\gamma \circ \widehat{
ho_1}(P)$$

3. return
$$\phi_J(P) := [(d_1d_2)^{-1}]\rho_2 \circ \gamma \circ \widehat{\rho_1}(P) \mod N.$$

 $\deg(\rho_i) = d_i \text{ and } P \in E[N].$

DRAWBACKS:

- Need knowledge of endomorphism ring.
- Can only evaluate points of order coprime to $d_1 d_2$.

$E_{1} \xrightarrow{\begin{array}{c} \rho_{1} \\ \mu_{1} \\ \mu_{2} \\ \mu_{3} \\ \phi_{J} \end{array}} \xrightarrow{\begin{array}{c} \rho_{2} \\ \mu_{2} \\ \mu_{3} \\ \phi_{J} \end{array}} E_{1} \xrightarrow{\begin{array}{c} \rho_{1} \\ \mu_{2} \\ \mu_{3} \\ \phi_{J} \end{array}} E_{1}$

- Works on any degree.
- Relatively efficient.
- Enables new computations.

Ideal representation

Handful of special curves have known \mathcal{O}_E (ex: $j(E_0) = 1728$).

Ideal representation

Let $\phi: E_1 \to E_2$ be an isogeny of degree d. Its *ideal representation* is:

- J the ideal corresponding to ϕ , \mathcal{O}_0 , $\rho_i : E_0 \to E_i$ and I_i .
- EvalTorsion

EvalTorsion:

1. Find
$$\gamma \in \mathcal{O}_0$$
 s.t. $\mathcal{O}_0 \gamma = I_1 J \overline{I_2}$.

2. Evaluate
$$\gamma \circ \widehat{\rho_1}(P)$$
.

3. return
$$\phi_J(P) := [(d_1d_2)^{-1}]\rho_2 \circ \gamma \circ \widehat{\rho_1}(P) \mod N.$$

 $\deg(\rho_i) = d_i \text{ and } P \in E[N].$

 $E_{1} \xrightarrow{\rho_{1}} I_{1} \xrightarrow{I_{2}} I_{2} \xrightarrow{\rho_{2}} E_{2}$

DRAWBACKS:

- Need knowledge of endomorphism ring.
- Can only evaluate points of order coprime to $d_1 d_2$.

ADVANTAGES:

- Works on any degree.
- Relatively efficient.
- Enables new computations.

Ideal representation

Handful of special curves have known \mathcal{O}_E (ex: $j(E_0) = 1728$).

Ideal representation

Let $\phi: E_1 \to E_2$ be an isogeny of degree *d*. Its *ideal representation* is:

- J the ideal corresponding to ϕ , \mathcal{O}_0 , $\rho_i : E_0 \to E_i$ and I_i .
- EvalTorsion

EvalTorsion:

1. Find
$$\gamma \in \mathcal{O}_0$$
 s.t. $\mathcal{O}_0 \gamma = I_1 J \overline{I_2}$.

2. Evaluate
$$\gamma \circ \widehat{\rho_1}(P)$$
.

3. return
$$\phi_J(P) := [(d_1d_2)^{-1}]\rho_2 \circ \gamma \circ \widehat{\rho_1}(P) \mod N.$$

 $\deg(\rho_i) = d_i \text{ and } P \in E[N].$

DRAWBACKS:

- Need knowledge of endomorphism ring.
- Can only evaluate points of order coprime to d_1d_2 .

- Works on any degree.
- Relatively efficient.
- Enables new computations.

Kani's Lemma

Its kernel is

1. The following map is an isogeny such that

 $F := \begin{pmatrix} \tilde{f} & -\tilde{g} \\ g' & f' \end{pmatrix} : B \times A' \to A \times B'$

 $\ker(F) = \left\{ \left(f(P), -g(P) \right) \middle| P \in A[\deg(F)] \right\}$

 $\deg(F) = \deg(f) + \deg(g)$

Kani's Lemma

Let A, B, A', B' be abelian varieties with commutative diagram:

deg(f) = deg(f')
 deg(g) = deg(g')

HDKernelTolsogeny

Given \mathcal{B} a basis of ker (ϕ) with $\phi : A \to A'$ a *B*-smooth *dim k* isogeny of degree *d*, we can compute ϕ in time $O(B^k \log(d))$.

Kani's Lemma

Its kernel is

1. The following map is an isogeny such that

 $F := \begin{pmatrix} \tilde{f} & -\tilde{g} \\ g' & f' \end{pmatrix} : B \times A' \to A \times B'$

 $\ker(F) = \left\{ \left(f(P), -g(P) \right) \middle| P \in A[\deg(F)] \right\}$

 $\deg(F) = \deg(f) + \deg(g)$

Kani's Lemma

Let A, B, A', B' be abelian varieties with commutative diagram:

- $\deg(f) = \deg(f')$
- $\deg(g) = \deg(g')$

HDKernelTolsogeny

Given \mathcal{B} a basis of ker (ϕ) with $\phi : A \to A'$ a *B*-smooth *dim* k isogeny of degree d, we can compute ϕ in time $O(B^k \log(d))$.

HD representation

HD representation

Let $\phi: E \to E'$ be an isogeny of degree d, its *HD representation* is:

- $(P, Q, \phi(P), \phi(Q))$ with $\langle P, Q \rangle = E[N]$, N smooth, coprime to d with $N \ge \sqrt{d}$.
- EvalKani

EvalKani:

- 1. Find $\{a_i\}_{i=1}^{g}$ s.t. $\sum_{i=1}^{g} a_i^2 = N \deg(\phi)$.
- 2. Compute α_g depending on g.
- 3. Compute F Kani's isogeny in dim 2g.
- 4. Evaluate ϕ using *F*.

with $\langle P, Q \rangle = E[N]$ and knowing $\phi(P), \phi(Q)$.

DRAWBACKS:

• Relatively slow

$$\alpha_2 := \left(\begin{array}{cc} a_1 & -a_2 \\ a_2 & a_1 \end{array}\right)$$

- Works for any degree.
- Works for any points.

HD representation

HD representation

Let $\phi: E \to E'$ be an isogeny of degree d, its *HD representation* is:

- $(P, Q, \phi(P), \phi(Q))$ with $\langle P, Q \rangle = E[N]$, N smooth, coprime to d with $N \ge \sqrt{d}$.
- EvalKani

EvalKani:

- 1. Find $\{a_i\}_{i=1}^{g}$ s.t. $\sum_{i=1}^{g} a_i^2 = N \deg(\phi)$.
- 2. Compute α_g depending on g.
- 3. Compute F Kani's isogeny in dim 2g.
- 4. Evaluate ϕ using F.

with $\langle P, Q \rangle = E[N]$ and knowing $\phi(P), \phi(Q)$.

DRAWBACKS:

• Relatively slow

- Works for any degree.
- Works for any points.

HD representation

HD representation

Let $\phi: E \to E'$ be an isogeny of degree d, its *HD representation* is:

- $(P, Q, \phi(P), \phi(Q))$ with $\langle P, Q \rangle = E[N]$, N smooth, coprime to d with $N \ge \sqrt{d}$.
- EvalKani

EvalKani:

- 1. Find $\{a_i\}_{i=1}^{g}$ s.t. $\sum_{i=1}^{g} a_i^2 = N \deg(\phi)$.
- 2. Compute α_g depending on g.
- 3. Compute F Kani's isogeny in dim 2g.
- 4. Evaluate ϕ using F.

with $\langle P, Q \rangle = E[N]$ and knowing $\phi(P), \phi(Q)$.

DRAWBACKS:

Relatively slow

$$\alpha_2 := \left(\begin{array}{cc} \mathbf{a}_1 & -\mathbf{a}_2 \\ \mathbf{a}_2 & \mathbf{a}_1 \end{array}\right)$$

- Works for any degree.
- Works for any points.

Isogeny representation (TL;DR)

	Kernel	Ideal	HD
Isogeny	smooth	any	any
Evaluation	any points	coprime to $d_1 d_2$	any points
Ad. info	none	endomorphism ring	none
Speed	quick	resonably quick	slow

Table: Comparison of different isogeny representation

Isogeny representation (TL;DR)

	Kernel	Ideal	HD
Isogeny	smooth	any	any
Evaluation	any points	coprime to $d_1 d_2$	any points
Ad. info	none	endomorphism ring	none
Speed	quick	resonably quick	slow

Table: Comparison of different isogeny representation

SQIPrime

Table of Contents

- Background
 - Kernel representation
 - Ideal representation
 - HD representation

- Main Ideas
- 3 SILBE
 - Context
 - Main Ideas

Appendix

16/28

SQIPrime Intro

SQIPrime: A post-quantum identification scheme that relies on prime isogenies.

- ► A derivative of *SQISignHD*, itself a variant of *SQISign*.
- Expand its usage of Kani's Lemma.

The *SQISign Family* relies on the following problems:

- Endomorphism problem: $E \rightarrow \mathcal{O}_E$ X
- Isogeny walk problem: $E, E' \rightarrow \phi X$
- Linking ideal problem: $\mathcal{O}_E, \mathcal{O}_{E'} \to I \checkmark$
SQIPrime Intro

SQIPrime: A post-quantum identification scheme that relies on prime isogenies.

- ► A derivative of *SQISignHD*, itself a variant of *SQISign*.
- Expand its usage of Kani's Lemma.

The *SQISign Family* relies on the following problems:

- Endomorphism problem: $E \rightarrow \mathcal{O}_E$ X
- Isogeny walk problem: $E, E' \rightarrow \phi X$
- Linking ideal problem: $\mathcal{O}_E, \mathcal{O}_{E'} \to I \checkmark$

SQIPrime Intro

SQIPrime: A post-quantum identification scheme that relies on prime isogenies.

- ► A derivative of *SQISignHD*, itself a variant of *SQISign*.
- Expand its usage of Kani's Lemma.

The *SQISign Family* relies on the following problems:

- Endomorphism problem: $E \to \mathcal{O}_E$ X
- Isogeny walk problem: $E, E' \rightarrow \phi X$
- Linking ideal problem: $\mathcal{O}_E, \mathcal{O}_{E'} \to I \checkmark$

SQI Family

SQISign & SQISignHD

SQISign :

- $\sigma \log (\simeq p^4)$ smooth.
- Given in kernel representation.

•
$$2^{f}T|(p^{2}-1) T \ge p^{5/4}$$
.

- + Compact. (177 B)
- Slow signature.
- + Quick verification.
- Hard to scale.
- Ad-Hoc security assumptions.

SQISignHD :

- σ short ($\simeq \sqrt{p}$) prime.
- Given in HD representation
- $p = 2^{\lambda} 3^{\lambda'} f 1.$
- + Very compact. (109 B)
- + Quick signature.
- Long verification.
- + Easy to scale.
- + Simpler security assumptions.

SQI Family

SQISign & SQISignHD

SQISign :

- $\sigma \log (\simeq p^4)$ smooth.
- Given in kernel representation.
- $2^{f}T|(p^{2}-1) T \ge p^{5/4}$.
- + Compact. (177 B)
- Slow signature.
- + Quick verification.
- Hard to scale.
- Ad-Hoc security assumptions.

- σ short ($\simeq \sqrt{p}$) prime.
- Given in HD representation.
- $p = 2^{\lambda} 3^{\lambda'} f 1.$
- + Very compact. (109 B)
- + Quick signature.
- Long verification.
- + Easy to scale.
- + Simpler security assumptions.

SQI Family

SQISign & SQISignHD

SQISign :

- $\sigma \log (\simeq p^4)$ smooth.
- Given in kernel representation.

•
$$2^{f}T|(p^{2}-1) T \ge p^{5/4}$$
.

- + Compact. (177 B)
- Slow signature.
- + Quick verification.
- Hard to scale.
- Ad-Hoc security assumptions.

- σ short ($\simeq \sqrt{p}$) prime.
- Given in HD representation.
- $p = 2^{\lambda} 3^{\lambda'} f 1.$
- + Very compact. (109 B)
- + Quick signature.
- Long verification.
- + Easy to scale.
- + Simpler security assumptions.

SQIPrime (The changes compare to SQISignHD)

Problems:

- 1. How do we make au and ψ prime?
- 2. How do we make φ prime?
- 3. How to verify σ ?

Solutions:

- 1. Use Kani's Lemma in dim 2 to split $\gamma \in \operatorname{End}(E_0)$.
- 2. Sample $C_1 \in E_A[q]$
- 3. Use $\kappa = \hat{\sigma} \circ \varphi$ with Kani's Lemma in dim 4 and split in the middle.

More complex in reality.

SQIPrime (The changes compare to SQISignHD)

Problems:

- 1. How do we make au and ψ prime?
- 2. How do we make φ prime?
- 3. How to verify σ ?

Solutions:

- 1. Use Kani's Lemma in dim 2 to split $\gamma \in \operatorname{End}(E_0)$.
- 2. Sample $C_1 \in E_A[q]$.
- Use κ = σ̂ ο φ with Kani's Lemma in dim 4 and split in the middle.

▶ More complex in reality.

SQIPrime (The changes compare to SQISignHD)

Problems:

- 1. How do we make au and ψ prime?
- 2. How do we make φ prime?
- 3. How to verify σ ?

Solutions:

- 1. Use Kani's Lemma in dim 2 to split $\gamma \in \operatorname{End}(E_0)$.
- 2. Sample $C_1 \in E_A[q]$.
- Use κ = σ̂ ο φ with Kani's Lemma in dim 4 and split in the middle.

More complex in reality.

SQIPrime

Main Ideas

SQIPrime (in its prime)

$$p=2^{2\lambda}f-1$$
 s.t. $p+1=2Nq$, with $q\simeq 2^{\lambda}$

- KeyGen:
 - pk : E_A and special basis $\langle R, S \rangle$ of $E_A[q]$.
 - sk : τ : $E_0 \rightarrow E_A$ and I_{τ} .
- Commit:
 - com : E₁. • sec : ψ : $E_0 \rightarrow E_1$ and I_{ψ} .
- Challenge: $C_1 \in E_A[q]$ with $\overline{E_A[q]} = \langle C_1, C_2 \rangle.$
- Response: Find I_{σ} and evaluate $\kappa = \sigma \circ \varphi$ over R, S, C_2 .
- Verify: Checks:
 - κ valid isogeny.
 - $\ker(\kappa) \cap E[q] = \ker(\varphi)$
- Same security as SQISignHD.

SQIPrime

Main Ideas

SQIPrime (in its prime)

$$p=2^{2\lambda}f-1$$
 s.t. $p+1=2Nq$, with $q\simeq 2^{\lambda}$

- KeyGen:
 - pk : E_A and special basis $\langle R, S \rangle$ of $E_A[q]$.
 - sk : τ : $E_0 \rightarrow E_A$ and I_{τ} .
- <u>Commit</u>:
 - com : E₁.
 sec : ψ : E₀ → E₁ and I_{ub}.
- Challenge: $C_1 \in E_A[q]$ with $\overline{E_A[q]} = \langle C_1, C_2 \rangle$.
- Response: Find I_{σ} and evaluate $\overline{\kappa = \sigma \circ \varphi}$ over R, S, C_2 .
- Verify: Checks:
 - κ valid isogeny.
 - $\operatorname{ker}(\kappa) \cap E[q] = \operatorname{ker}(\varphi)$
- Same security as SQISignHD.

Parameters

SQIPrime-friendly prime are easy to find:

$$\begin{split} p+1 &= 2^{2\cdot 120} \cdot 167 \cdot 397 \simeq 2^{256.01} \\ p-1 &= 2\cdot 3\cdot 7\cdot 11\cdot 41\cdot 5683514583831199\cdot 500402127095125861\cdot q \\ q &= 2174422729538275144428922863792468335219 \simeq 2^{130.67} \end{split}$$

	SQISign	SQISignHD	SQIPrime		
prime	$2^{f}T (p^{2}-1)$ and $T=DT'$	$p+1=2^{\lambda}3^{\lambda'}f$	$p = 2^{2\lambda}f - 1$ and $p - 1 = 2Nq$		
Key gen	2 [•] isogenies	2^{λ} isogenies	(2,2)-isogenies		
Commitment	T' isogenies	2^{λ} isogenies	(2, 2)-isogenies		
Challenge	D isogenies	$3^{\lambda'}$ isogenies	$C_1 \in E_A[q]$		
Response	Kernel representation	HD rep.	HD representation		
Verification	2 [•] isogenies	(2, 2, 2, 2)-isogenies	(2, 2, 2, 2)-isogenies		

Table: Comparison of the SQISign Family

21/28

Table of Contents

- Background
 - Kernel representation
 - Ideal representation
 - HD representation
- 2 SQIPrime
 - SQI Family
 - Main Ideas
- SILBE
 - Context
 - Main Ideas
 - 4 Appendix

22/28

SILBE intro

SILBE: A post-quantum *Updatable Public Key Encryption* (UPKE) scheme based on the generalised lollipop attacks over M-SIDH.

- ▶ First isogeny-based UPKE not based on group actions.
- Inspired by SETA adapted to the generalised lollipop.

UPKE

SILBE intro

SILBE: A post-quantum *Updatable Public Key Encryption* (UPKE) scheme based on the generalised lollipop attacks over M-SIDH.

- **First** isogeny-based UPKE not based on group actions.
- Inspired by SETA adapted to the generalised lollipop.

UPKE

An *UPKE* scheme is given 6 PPT(λ) with Setup(1^{λ}) \rightarrow pp:

- $\mathsf{KG}(\mathsf{pp}) \overset{\$}{\longrightarrow} (\mathsf{sk},\mathsf{pk})$
- $Enc(pk, m) \xrightarrow{\$} ct$
- Dec(sk, ct) \longrightarrow m • UG(pp) $\stackrel{\$}{\longrightarrow} \mu$
- Upk(pk, μ) \longrightarrow pk'

•
$$\mathsf{Usk}(\mathsf{sk},\mu) \longrightarrow \mathsf{sk}'$$

Ensures:

Correctness.

- Forward Security.
- Asynchronous key update.
- Post-Compromise Security.

SILBE intro

SILBE: A post-quantum *Updatable Public Key Encryption* (UPKE) scheme based on the generalised lollipop attacks over M-SIDH.

- **First** isogeny-based UPKE not based on group actions.
- Inspired by SETA adapted to the generalised lollipop.

UPKE

An *UPKE* scheme is given 6 $PPT(\lambda)$ with $Setup(1^{\lambda}) \rightarrow pp$:

- $KG(pp) \xrightarrow{\$} (sk, pk)$ $Dec(sk, ct) \longrightarrow m$
- $Enc(pk, m) \xrightarrow{\$} ct$
- UG(pp) $\stackrel{\$}{\longrightarrow} \mu$
- Upk(pk, μ) \longrightarrow pk'

•
$$\mathsf{Usk}(\mathsf{sk},\mu) \longrightarrow \mathsf{sk}'$$

Ensures:

- Forward Security.
- Asynchronous key update. Po
- Post-Compromise Security.

Context

M-SIDH

M-SIDH public parameters:

- p = ABf 1 prime with $A = \prod_{i=1}^{n_A} p_i$ and $B = \prod_{j=1}^{n_B} q_j$.
- $\langle P_A, Q_A \rangle = E[A]$
- $\langle P_B, Q_B \rangle = E[B]$

M-SIDH Alice(pp) black(pp) $s_A \leftarrow_{\mathfrak{s}} \mathbb{Z}_A, \alpha \leftarrow_{\mathfrak{s}} \mu_2(B)$ $s_B \leftarrow \mathfrak{g} \mathbb{Z}_B, \beta \leftarrow \mathfrak{g} \mu_2(A)$ $R_A \leftarrow P_A + [s_A]Q_A$ $R_B \leftarrow P_B + [s_B]Q_B$ $\phi_A, E_A \leftarrow \text{KernelTolso.}(E, R_A) \qquad \phi_B, E_B \leftarrow \text{KernelTolso.}(E, R_B)$ $S_{A} \leftarrow [\alpha]\phi_{A}(P_{B})$ $S_B \leftarrow [\beta]\phi_B(P_A)$ $T_{A} \leftarrow [\alpha] \phi_{A}(Q_{R})$ $T_{\mathsf{P}} \leftarrow [\beta]\phi_{\mathsf{P}}(Q_{\mathsf{A}})$ E_A, S_A, T_A E_R, S_R, T_R $U_A \leftarrow S_B + [s_A]T_B$ $U_B \leftarrow S_A + [s_B]T_A$ $\psi_A, E_K \leftarrow \text{KernelTolso.}(E_B, U_A) \quad \psi_B, E_K \leftarrow \text{KernelTolso.}(E_A, U_B)$ $K \leftarrow KDF(i(E_K))$ $K \leftarrow KDF(i(E_{\kappa}))$

Supersingular isogeny problem with MASKED torsion point information

Let $\phi : E \to E'$ be an isogeny of degree d, $\langle P, Q \rangle = E[N]$ with N coprime to d, $m \in \mu_2(N)$. $P, Q, [m]\phi(P), [m]\phi(Q) \xrightarrow{?} \phi$

SQIPrime & SILBE

Context

M-SIDH

M-SIDH public parameters:

• p = ABf - 1 prime with $A = \prod_{i=1}^{n_A} p_i$ and $B = \prod_{j=1}^{n_B} q_j$.

•
$$\langle P_A, Q_A \rangle = E[A]$$

•
$$\langle P_B, Q_B \rangle = E[B]$$

Supersingular isogeny problem with MASKED torsion point information

Let $\phi: E \to E'$ be an isogeny of degree d, $\langle P, Q \rangle = E[N]$ with N coprime to d, $m \in \mu_2(N)$. $P, Q, [m]\phi(P), [m]\phi(Q) \xrightarrow{?} \phi$

Max DUPARC (EPFL)

Main Ideas

SILBE (spelled out)

KeyGen:

- Alice computes $\rho_0 : E_0 \rightarrow E_A$ long.
- Finds sk := $\phi_A : E_0 \to E_A$ short prime, pk = E_A .

• <u>Enc</u>

• Bob computes $\phi: E_A \to E_B$, mask using m.

• <u>Dec</u>:

• Alice computes generalized lollipop

 $\psi = \pi_*(\phi_B \circ \phi_A) \circ \phi_A \circ \phi_B$

• Use Kani's Lemma in dim 4.

• <u>UG</u>:

• Sample random $\langle K \rangle = \ker(\rho_1)$

• Upk:

• Bob constructs $\rho_1: E_A \to E'_A$.

• <u>Usk</u>:

- Alice computes $\rho_1: E_A \to E_A$
- Finds sk' := $\phi'_A : E_A \to E'_A$.
- ▶ FAR more complex in reality.

 Isogeny with masked torsion points problem over random curves hard SILBE OW-qCPA-U secure.

SILBE I

Main Ideas

SILBE (spelled out)

- KeyGen:
 - Alice computes $\rho_0 : E_0 \rightarrow E_A$ long.
 - Finds sk := $\phi_A : E_0 \to E_A$ short prime, pk = E_A .
- <u>Enc</u>:
 - Bob computes $\phi: E_A \to E_B$, mask using m.
- <u>Dec</u>:
 - Alice computes generalized lollipop

 $\psi = \pi_*(\phi_B \circ \phi_A) \circ \phi_A \circ \phi_B$

- Use Kani's Lemma in dim 4.
- <u>UG</u>:
 - Sample random $\langle K
 angle = \ker(
 ho_1)$
- Upk:
 - Bob constructs $\rho_1: E_A \to E'_A$
- <u>Usk</u>:
 - Alice computes $\rho_1: E_A \to E_A$
 - Finds sk' := $\phi'_A : E_A \to E'_A$.
- ▶ FAR more complex in reality.

 Isogeny with masked torsion points problem over random curves hard
 SILBE OW-qCPA-U secure.

Main Ideas

SILBE (spelled out)

- KeyGen:
 - Alice computes $\rho_0: E_0 \to E_A$ long.
 - Finds sk := $\phi_A : E_0 \to E_A$ short prime, pk = E_A .
- <u>Enc</u>:
 - Bob computes $\phi: E_A \to E_B$, mask using m.
- <u>Dec</u>:
 - Alice computes generalized lollipop

 $\psi = \pi_*(\phi_B \circ \phi_A) \circ \phi_A \circ \phi_B$

- Use Kani's Lemma in dim 4.
- UG:
 - Sample random $\langle K \rangle = \ker(\rho_1)$.
- Upk:
 - Bob constructs $\rho_1: E_A \to E'_A$
- <u>Usk</u>:
 - Alice computes $\rho_1: E_A \rightarrow E_A$
 - Finds sk' := $\phi'_A : E_A \to E'_A$.
- ▶ FAR more complex in reality.

 Isogeny with masked torsion points problem over random curves hard SILBE OW-qCPA-U secure.

25 / 28

Main Ideas

SILBE (spelled out)

- KeyGen:
 - Alice computes $\rho_0: E_0 \to E_A$ long.
 - Finds sk := $\phi_A : E_0 \to E_A$ short prime, pk = E_A .
- <u>Enc</u>:
 - Bob computes $\phi: E_A \to E_B$, mask using m.
- <u>Dec</u>:
 - Alice computes generalized lollipop

 $\psi = \pi_*(\phi_B \circ \phi_A) \circ \phi_A \circ \phi_B$

- Use Kani's Lemma in dim 4.
- <u>UG</u>:
 - Sample random $\langle K \rangle = \ker(\rho_1)$.
- Upk:
 - Bob constructs $\rho_1: E_A \to E'_A$.
- <u>Usk</u>:
 - Alice computes $\rho_1: E_A \to E_A$.
 - Finds sk' := $\phi'_A : E_A \to E'_A$
- ▶ FAR more complex in reality.

Main Ideas

SILBE (spelled out)

- KeyGen:
 - Alice computes $\rho_0: E_0 \to E_A$ long.
 - Finds sk := $\phi_A : E_0 \to E_A$ short prime, pk = E_A .
- <u>Enc</u>:
 - Bob computes $\phi: E_A \to E_B$, mask using m.
- <u>Dec</u>:
 - Alice computes generalized lollipop

 $\psi = \pi_*(\phi_B \circ \phi_A) \circ \phi_A \circ \phi_B$

- Use Kani's Lemma in dim 4.
- <u>UG</u>:
 - Sample random $\langle K \rangle = \ker(\rho_1)$.
- Upk:
 - Bob constructs $\rho_1: E_A \to E'_A$.
- <u>Usk</u>:
 - Alice computes $\rho_1 : E_A \to E_A$.
 - Finds sk' := $\phi'_A : E_A \to E'_A$.
- ▶ FAR more complex in reality.

Main Ideas

SILBE (spelled out)

- KeyGen:
 - Alice computes $\rho_0: E_0 \to E_A$ long.
 - Finds sk := $\phi_A : E_0 \to E_A$ short prime, pk = E_A .
- <u>Enc</u>:
 - Bob computes $\phi: E_A \to E_B$, mask using m.
- <u>Dec</u>:
 - Alice computes generalized lollipop

 $\psi = \pi_*(\phi_B \circ \phi_A) \circ \phi_A \circ \phi_B$

- Use Kani's Lemma in dim 4.
- <u>UG</u>:
 - Sample random $\langle K \rangle = \ker(\rho_1)$.
- Upk:
 - Bob constructs $\rho_1: E_A \to E'_A$.
- <u>Usk</u>:
 - Alice computes $\rho_1 : E_A \to E_A$.
 - Finds sk' := $\phi'_A : E_A \to E'_A$.
- ▶ FAR more complex in reality.

 Isogeny with masked torsion points problem over random curves hard
 SILBE OW-qCPA-U secure. SILBE N

Parameters

$$p = 3^{eta} N f + 1$$
 with $N = \prod_{i=1}^n p_i$ such that

•
$$N \geq 3^{\beta}\sqrt{p}\log(p)$$
.

•
$$N_t = \prod_{i=t}^n p_i \ge 3^{\beta/2} \implies n-t \ge \lambda.$$

λ	β	Ν	f	п	$\log_2(p)$
128	2043	$5\times7\times11\times\cdots\times6863$	1298	881	13013
192	3229	$5 imes 7 imes 11 imes \cdots imes 10789$	1790	1312	20538
256	4461	$5 imes 7 imes 11 imes \cdots imes 14879$	16706	1741	28346

Table: Parameters for SILBE

Kani's Lemma over such prime is not practical.

- Decryption requires $7^5 \lambda^5 \log(\lambda)^4$ operations.
 - \blacktriangleright $\lambda = 128 \implies 2^{60}$ operations.

26 / 28

SILBE N

Parameters

$$p = 3^{eta} N f + 1$$
 with $N = \prod_{i=1}^n p_i$ such that

•
$$N \geq 3^{\beta}\sqrt{p}\log(p)$$
.

•
$$N_t = \prod_{i=t}^n p_i \ge 3^{\beta/2} \implies n-t \ge \lambda.$$

λ	β	Ν	f	п	$\log_2(p)$
128	2043	$5\times7\times11\times\cdots\times6863$	1298	881	13013
192	3229	$5 imes 7 imes 11 imes \cdots imes 10789$	1790	1312	20538
256	4461	$5 imes 7 imes 11 imes \cdots imes 14879$	16706	1741	28346

Table: Parameters for SILBE

Kani's Lemma over such prime is not practical.

- Decryption requires $7^5 \lambda^5 \log(\lambda)^4$ operations.
 - ▶ $\lambda = 128 \implies 2^{60}$ operations.

Conclusion

Future directions

SQIPrime:

- Work on an implementation.
- Further consideration on distribution over multiple G^ℓ_p.

SILBE:

• See if its principles are usable over FESTA.

Happy to discuss your comments and questions !!!

e-prints coming soon.

Appendix

Table of Contents

- Background
 - Kernel representation
 - Ideal representation
 - HD representation
- 2 SQIPrime
 - SQI Family
 - Main Ideas
- 3 SILBE
 - Context
 - Main Ideas

28/28

There are handfull of curves such that we know the correspondence for all p.
 ▶ If p = 3 mod 4, j(E₀) = 1728 is supersingular and

$$\mathcal{O}_0 = \mathbb{Z} + \mathbf{i}\mathbb{Z} + \frac{\mathbf{i} + \mathbf{j}}{2}\mathbb{Z} + \frac{1 + \mathbf{i}\mathbf{j}}{2}\mathbb{Z}$$

with $\mathbf{i}: (x, y) \to (-x, \sqrt{-1}y)$ and $\mathbf{j} = \pi$.

- Knowing End(E) ≅ O_E = ⟨α₁, · · · , α₄⟩ with an efficient representation of all α_i.
 We can evaluate ANY γ ∈ End(E).
- 3. For any isogeny $\rho: E \to E'$, knowing $\mathcal{O}_E \implies$ knowing $\mathcal{O}_{E'}$.
- 4. For any *smooth* isogeny $\rho: E \to E'$, knowing $\mathcal{O}_E \implies$ computing I_{ρ} is easy.

There are handfull of curves such that we know the correspondence for all p.
 ▶ If p = 3 mod 4, j(E₀) = 1728 is supersingular and

$$\mathcal{O}_0 = \mathbb{Z} + \mathbf{i}\mathbb{Z} + \frac{\mathbf{i} + \mathbf{j}}{2}\mathbb{Z} + \frac{1 + \mathbf{i}\mathbf{j}}{2}\mathbb{Z}$$

with $\mathbf{i}: (x, y) \to (-x, \sqrt{-1}y)$ and $\mathbf{j} = \pi$.

- Knowing End(E) ≅ O_E = ⟨α₁, · · · , α₄⟩ with an efficient representation of all α_i.
 We can evaluate ANY γ ∈ End(E).
- 3. For any isogeny $\rho: E \to E'$, knowing $\mathcal{O}_E \implies$ knowing $\mathcal{O}_{E'}$.
- 4. For any *smooth* isogeny $\rho: E \to E'$, knowing $\mathcal{O}_E \implies$ computing I_{ρ} is easy.

There are handfull of curves such that we know the correspondence for all p.
 ▶ If p = 3 mod 4, j(E₀) = 1728 is supersingular and

$$\mathcal{O}_0 = \mathbb{Z} + \mathbf{i}\mathbb{Z} + \frac{\mathbf{i} + \mathbf{j}}{2}\mathbb{Z} + \frac{1 + \mathbf{i}\mathbf{j}}{2}\mathbb{Z}$$

with $\mathbf{i}: (x, y) \rightarrow (-x, \sqrt{-1}y)$ and $\mathbf{j} = \pi$.

- Knowing End(E) ≅ O_E = ⟨α₁, · · · , α₄⟩ with an efficient representation of all α_i.
 We can evaluate ANY γ ∈ End(E).
- 3. For any isogeny $\rho: E \to E'$, knowing $\mathcal{O}_E \implies$ knowing $\mathcal{O}_{E'}$.
- 4. For any *smooth* isogeny $\rho: E \to E'$, knowing $\mathcal{O}_E \implies$ computing I_{ρ} is easy.

There are handfull of curves such that we know the correspondence for all p.
 ▶ If p = 3 mod 4, j(E₀) = 1728 is supersingular and

$$\mathcal{O}_0 = \mathbb{Z} + \mathbf{i}\mathbb{Z} + \frac{\mathbf{i} + \mathbf{j}}{2}\mathbb{Z} + \frac{1 + \mathbf{i}\mathbf{j}}{2}\mathbb{Z}$$

with $\mathbf{i}: (x, y) \rightarrow (-x, \sqrt{-1}y)$ and $\mathbf{j} = \pi$.

- Knowing End(E) ≅ O_E = ⟨α₁, · · · , α₄⟩ with an efficient representation of all α_i.
 We can evaluate ANY γ ∈ End(E).
- 3. For any isogeny $\rho: E \to E'$, knowing $\mathcal{O}_E \implies$ knowing $\mathcal{O}_{E'}$.
- 4. For any smooth isogeny $\rho: E \to E'$, knowing $\mathcal{O}_E \implies$ computing I_{ρ} is easy.

SIDH

SIDH public parameters:

•
$$p = \ell_A^{e_A} \ell_B^{e_B} f - 1$$
 a prime.

- $\langle P_A, Q_A \rangle = E[\ell_A^{e_A}]$
- $\langle P_B, Q_B \rangle = E[\ell_B^{e_B}].$

Supersingular isogeny problem with torsion point information

Let $\phi: E \to E'$ be an isogeny of degree d, $\langle P, Q \rangle = E[N]$ with N coprime to d.

 $P, Q, \phi(P), \phi(Q) \xrightarrow{?} \phi$

Max DUPARC (EPFL)

SQIPrime & SILBE

SIDH

SIDH public parameters:

•
$$p = \ell_A^{e_A} \ell_B^{e_B} f - 1$$
 a prime.

- $\langle P_A, Q_A \rangle = E[\ell_A^{e_A}]$
- $\langle P_B, Q_B \rangle = E[\ell_B^{e_B}].$

Supersingular isogeny problem with torsion point information

Let $\phi: E \to E'$ be an isogeny of degree d, $\langle P, Q \rangle = E[N]$ with N coprime to d.

$$P, Q, \phi(P), \phi(Q) \xrightarrow{?} \phi$$

Max DUPARC (EPFL)

A prime new Commitment and KeyGen

Three main ideas:

1. Use Kani's Lemma to split isogenies.

$$F: E_0^2 \to E \times E'$$
$$\ker(F) = \left\{ \left([\ell](P), \gamma(P) \right) \middle| P \in E_0[N] \right\}$$

 $\deg(\tau)$ and $\deg(\rho)$ coprime.

- 2. Finding $\gamma \in \text{End}(E_0)$ with $\text{deg}(\gamma) = N$ is easy if N > p.
- 3. Finding I_{τ} from γ is easy.

Commit & KeyGen:

- Sample $\ell \simeq \sqrt{p}$ prime and find γ , deg $(\gamma) = \ell (2^{2\lambda} - \ell)$ with $2^{2\lambda} \simeq p$.
- Get F and I_{τ} .
- Compute a *special basis* over *E*_A in **KeyGen**.

► *E*_A distribution is computationally indistinguishable from uniform.

A prime new Commitment and KeyGen

Three main ideas:

1. Use Kani's Lemma to split isogenies.

$$F: E_0^2 \to E \times E'$$
$$\ker(F) = \left\{ \left([\ell](P), \gamma(P) \right) \middle| P \in E_0[N] \right\}$$

 $\deg(\tau)$ and $\deg(\rho)$ coprime.

- Finding γ ∈ End(E₀) with deg(γ) = N is easy if N > p.
- 3. Finding I_{τ} from γ is easy.

Commit & KeyGen:

- Sample $\ell \simeq \sqrt{p}$ prime and find γ , deg $(\gamma) = \ell (2^{2\lambda} - \ell)$ with $2^{2\lambda} \simeq p$.
- Get F and I_{τ} .
- Compute a *special basis* over *E*_A in **KeyGen**.

► *E*_A distribution is computationally indistinguishable from uniform.

A prime new Commitment and KeyGen

Three main ideas:

1. Use Kani's Lemma to split isogenies.

$$F: E_0^2 \to E \times E'$$
$$\ker(F) = \left\{ \left([\ell](P), \gamma(P) \right) \middle| P \in E_0[N] \right\}$$

 $\deg(\tau)$ and $\deg(\rho)$ coprime.

- 2. Finding $\gamma \in \text{End}(E_0)$ with $\text{deg}(\gamma) = N$ is easy if N > p.
- 3. Finding I_{τ} from γ is easy.

Commit & KeyGen:

- Sample $\ell \simeq \sqrt{p}$ prime and find γ , deg $(\gamma) = \ell (2^{2\lambda} - \ell)$ with $2^{2\lambda} \simeq p$.
- Get F and I_{τ} .
- Compute a *special basis* over *E*_A in **KeyGen**.

► *E*_A distribution is computationally indistinguishable from uniform.
SQIPrime [2]

$$p=2^{2\lambda}f-1$$

- KeyGen:
 - pk : E_A and special basis $\langle R, S \rangle$.
 - sk : τ : $E_0 \rightarrow E_A$ and I_{τ} .
- <u>Commit</u>:
 - com : *E*₁.
 - sec : ψ : $E_0 \rightarrow E_1$ and I_{ψ} .

How do we make φ prime ?

How to verify ?

The real challenge

Let
$$\langle C_1 \rangle = \ker(\varphi)$$
 with $\deg(\varphi) = q \simeq 2^{\lambda}$

Problems:

- 1. How does the Prover compute I_{φ} ?
- 2. How does the Prover evaluate σ ?
- 3. How does the Verifier know E_2 ?

Solutions:

1. Use special basis.

$$\ker(\varphi) = \langle [a]P + [b]Q \rangle \implies I_{\varphi} = [a + b\iota]_* I_F$$

 $\iota(P)=Q.$

- 2. Evaluate $\kappa = \sigma \circ \varphi$ instead.
- 3. Check ker $(\kappa) \cap E_A[q] = \ker(\varphi)$.

The real challenge

Let
$$\langle C_1 \rangle = \ker(\varphi)$$
 with $\deg(\varphi) = q \simeq 2^{\lambda}$

Problems:

- 1. How does the Prover compute I_{φ} ?
- 2. How does the Prover evaluate σ ?
- 3. How does the Verifier know E_2 ?

Solutions:

1. Use special basis.

$$\ker(\varphi) = \langle [a]P + [b]Q \rangle \implies I_{\varphi} = [a + b\iota]_* I_P$$

 $\iota(P) = Q.$

- 2. Evaluate $\kappa = \sigma \circ \varphi$ instead.
- 3. Check ker $(\kappa) \cap E_A[q] = \text{ker}(\varphi)$.

SQIPrime [3]

$$p=2^{2\lambda}f-1$$
 s.t. $p+1=2Nq$, with $q\simeq 2^{\lambda}$ prime.

- KeyGen:
 - pk : E_A and special basis $\langle R, S \rangle$ of $E_A[q]$.
 - sk : τ : $E_0 \rightarrow E_A$ and I_{τ} .
- <u>Commit</u>:
 - com : E₁.
 sec : ψ : E₀ → E₁ and I_ψ.
- Challenge: $C_1 \in E_A[q]$ with $\overline{\ker(\varphi)} = \langle C_1 \rangle$.
- Response: Find I_{σ} and send $\kappa = \sigma \circ \varphi$ in HD representation.

How to verify ?

Efficient verification

- Like SQISignHD, we use Kani's Lemma in dimension 4.
- κ too long deg $(\kappa) \simeq p \log(p) > 2^{2\lambda}$.
- ► Have to split F = F₂ F₁ and evaluate at the middle with deg(F_i) = d_i.

$$F\begin{pmatrix}0\\0\\X\\0\end{pmatrix} = \begin{pmatrix} [a_1]X\\[-a_2]X\\Y\\0\end{pmatrix} \iff [d_2]F_1\begin{pmatrix}0\\0\\X\\0\end{pmatrix} = \widetilde{F}_2\begin{pmatrix} [a_1]X\\[-a_2]X\\Y\\0\end{pmatrix}$$

• Requires sending a 3rd point C_2 .

Efficient verification

- Like SQISignHD, we use Kani's Lemma in dimension 4.
- κ too long deg(κ) ≃ p log(p) > 2^{2λ}.
- ► Have to split F = F₂ ∘ F₁ and evaluate at the middle with deg(F_i) = d_i.

$$F\begin{pmatrix}0\\0\\X\\0\end{pmatrix} = \begin{pmatrix} [a_1]X\\[-a_2]X\\Y\\0\end{pmatrix} \iff [d_2]F_1\begin{pmatrix}0\\0\\X\\0\end{pmatrix} = \widetilde{F}_2\begin{pmatrix} [a_1]X\\[-a_2]X\\Y\\0\end{pmatrix}$$

• Requires sending a 3rd point C_2 .

OW-PCA-U Game

 $\mathcal{G}^{\mathsf{OW}\text{-}\mathsf{PCA}\text{-}\mathsf{U}}(\mathcal{A}_1,\mathcal{A}_2)$ 1: i = 02: Upd_list = Cor_list = \emptyset 3: $sk_0, pk_0 \xleftarrow{\ } KG(pp)$ 4: $j, st \leftarrow \mathcal{A}_1^{Oracles}(pk_0)$ 5: if j > i do return \perp $6 \cdot \mathbf{m} \xleftarrow{\$} \mathcal{M}$ 7: $ct \xleftarrow{\ } Enc(pk_i, m)$ 8: $n \leftarrow \mathcal{A}_2^{\text{Oracles}}(\text{ct}, \text{st})$ if IsFresh(*j*) do g · return $m \stackrel{?}{=} n$ 10 . 11 . return \perp lsFresh(i)

1: return not $j \in Cor_{list}$

$$\begin{array}{l} \mbox{Fresh}_Upd() \rightarrow {\sf pk}_i \\ \hline 1: & \mu \stackrel{\$}{\leftarrow} UG(1^{\lambda}) \\ 2: & {\sf sk}_{i+1} \stackrel{\$}{\leftarrow} U{\sf sk}({\sf sk}_i,\mu) \\ 3: & {\sf pk}_{i+1} \stackrel{\$}{\leftarrow} U{\sf pk}({\sf pk}_i,\mu) \\ 4: & i \leftarrow i+1 \\ 5: & {\sf return} \; {\sf pk}_i \end{array}$$

 $Corrupt(i) \rightarrow sk_i$ 1: $Cor_list = Cor_list \cup \{i\}$ 2: $i, k \leftarrow i$ 3: while $(i - 1, i) \in Upd_{list}$: 4: $Cor_{list} + = \{i - 1\}$ 5: $i \leftarrow i - 1$ 6: while $(k, k+1) \in Upd_{-list}$: 7: $Cor_{list} + = \{k + 1\}$ 8: $k \leftarrow k+1$ 9: return ski $Plaintext_Check(m, c, j) \rightarrow b$ 1: if $m \notin \mathcal{M}$ or j > i do

- 2: return ⊥
- 3: **else do**

4 : return $m \stackrel{?}{=} Dec(sk_j, c)$

Lollipops attacks

[Pet17]: Petit's original lollipop attack:

- Given $\varphi(E_0[N])$ of degree d.
- Find $\theta \in \operatorname{End}(E_0)$ s.t. deg $(\tau) = N$, $\tau = \varphi \circ \theta \circ \widehat{\varphi} + [n]$
- ker(τ) is known as $\tau|_{E[N]} = [d]\theta|_{E_0[N]} + [n]\mathbf{Id}$.
- $\ker(\widehat{\varphi}) \simeq \ker(\tau [n]) \cap E[d].$

Many development on lollipops:

- [dQKL⁺20]: Improved lollipop
- [FP21]: Adaptive attack over SIDH
- [CV23]: Generalised lollipop:
 - ▶ Works on M-SIDH.
 - ▶ Requires E_0 defined over \mathbb{F}_p .

Lollipops attacks

[Pet17]: Petit's original lollipop attack:

- Given $\varphi(E_0[N])$ of degree d.
- Find $\theta \in \operatorname{End}(E_0)$ s.t. deg $(\tau) = N$, $\tau = \varphi \circ \theta \circ \widehat{\varphi} + [n]$
- ker (τ) is known as $\tau|_{E[N]} = [d]\theta|_{E_0[N]} + [n]\mathbf{Id}$.
- $\ker(\widehat{\varphi}) \simeq \ker(\tau [n]) \cap E[d].$

Many development on lollipops:

- [dQKL⁺20]: Improved lollipop
- [FP21]: Adaptive attack over SIDH
- [CV23]: Generalised lollipop:
 - Works on M-SIDH.
 - Requires E_0 defined over \mathbb{F}_p .

Low walk distribution

Let $\phi: E \to E'$ be an ℓ^h -isogeny obtained from a non-backtracking random walk over $\mathcal{G}_{\rho}^{\ell}$. Then, for all $\varepsilon \in]0, 2]$,

dist
$$\left\{ E' \text{ codomain of } \phi \middle| E' \text{ uniform in } \mathcal{G}_p^\ell \right\} = O(p^{-\varepsilon/2})$$

provided that $h \ge (1 + \varepsilon) \log_{\ell}(p)$.

Security SILBE as a PKE

The security of SILBE as an OW-PCA PKE reduces to the *supersingular isogeny problem* with masked torsion point information over random curves.

Security SILBE as an UPKE

SILBE is OW-PCA secure \iff SILBE is OW-PCA-U secure

Using [AW23], we can make of SILBE an IND-CU-CCA UPKE in the ROM.

10/17

Low walk distribution

Let $\phi: E \to E'$ be an ℓ^h -isogeny obtained from a non-backtracking random walk over $\mathcal{G}_{\rho}^{\ell}$. Then, for all $\varepsilon \in]0, 2]$,

dist
$$\left\{ E' \text{ codomain of } \phi \middle| E' \text{ uniform in } \mathcal{G}_p^\ell \right\} = O(p^{-\varepsilon/2})$$

provided that $h \ge (1 + \varepsilon) \log_{\ell}(p)$.

Security SILBE as a PKE

The security of SILBE as an OW-PCA PKE reduces to the *supersingular isogeny problem* with masked torsion point information over random curves.

Security SILBE as an UPKE

SILBE is OW-PCA secure \iff SILBE is OW-PCA-U secure

Using [AW23], we can make of SILBE an IND-CU-CCA UPKE in the ROM.

Low walk distribution

Let $\phi : E \to E'$ be an ℓ^h -isogeny obtained from a non-backtracking random walk over $\mathcal{G}_{\rho}^{\ell}$. Then, for all $\varepsilon \in]0, 2]$,

dist
$$\left\{ E' \text{ codomain of } \phi \middle| E' \text{ uniform in } \mathcal{G}_p^\ell \right\} = O(p^{-\varepsilon/2})$$

provided that $h \ge (1 + \varepsilon) \log_{\ell}(p)$.

Security SILBE as a PKE

The security of SILBE as an OW-PCA PKE reduces to the *supersingular isogeny problem* with masked torsion point information over random curves.

Security SILBE as an UPKE

SILBE is OW-PCA secure \iff SILBE is OW-PCA-U secure

Using [AW23], we can make of SILBE an IND-CU-CCA UPKE in the ROM.

Low walk distribution

Let $\phi: E \to E'$ be an ℓ^h -isogeny obtained from a non-backtracking random walk over $\mathcal{G}_{\rho}^{\ell}$. Then, for all $\varepsilon \in]0, 2]$,

dist
$$\left\{ E' \text{ codomain of } \phi \middle| E' \text{ uniform in } \mathcal{G}_p^\ell \right\} = O(p^{-\varepsilon/2})$$

provided that $h \ge (1 + \varepsilon) \log_{\ell}(p)$.

Security SILBE as a PKE

The security of SILBE as an OW-PCA PKE reduces to the *supersingular isogeny problem* with masked torsion point information over random curves.

Security SILBE as an UPKE

```
SILBE is OW-PCA secure \iff SILBE is OW-PCA-U secure
```

• Using [AW23], we can make of SILBE an IND-CU-CCA UPKE in the ROM.

Encryption & Decryption

- Alice knows ϕ_A and Bob E_A , $m \in \mu_2(N)$.
- Encryption:
 - Bob computes $\phi: E_A \to E_B$ deg $(\phi_B) = 3^{\beta}$
 - Computes $\binom{R_1}{R_2} = [m]\phi_B\binom{P_A}{Q_A}$ with $\langle P_A, Q_A \rangle = E_A[N].$
 - Sends E_B, R_1, R_2 .
- Decryption:
 - Alice computes ψ(E_B[N]) as

$$\psi\binom{S}{T} = 3^{\beta} \operatorname{deg}(\phi_{A}) \mathsf{M}_{\pi}^{-1} \mathsf{M}_{\phi_{\mathsf{A}}} \pi\binom{R_{1}}{R_{2}}$$

with $\binom{S}{T} = \phi_B \circ \phi_A \binom{P_0}{Q_0}$

Uses Kani's Lemma in dim 4 to get

$$\psi(E[3^{\beta}]) = \ker(\psi)[3^{\beta}] = \ker(\widehat{\phi_B})$$

• Uses discrete log to retrieve m.

$$p = 3^{eta} N f + 1$$
 with $N = \prod_{i=1}^{n} p_i$
 $\langle P_0, Q_0 \rangle = E_0[N]$

 $\psi = \pi_*(\phi_B \circ \phi_A) \circ \phi_A \circ \phi_B$

• Need
$$N > 3^{\beta} \operatorname{deg}(\phi_A) \simeq 3^{\beta} \sqrt{p} \log(p)$$
.

Encryption & Decryption

- Alice knows ϕ_A and Bob E_A , $m \in \mu_2(N)$.
- Encryption:
 - Bob computes $\phi: E_A \rightarrow E_B$ $\deg(\phi_B) = 3^{\beta}$
 - Computes $\binom{R_1}{R_2} = [m]\phi_B\binom{P_A}{Q_A}$ with $\langle P_A, Q_A \rangle = E_A[N].$
 - Sends E_B, R_1, R_2 .
- Decryption:
 - Alice computes $\psi(E_B[N])$ as

$$\psi\binom{S}{T} = 3^{\beta} \operatorname{deg}(\phi_{A}) \mathsf{M}_{\pi}^{-1} \mathsf{M}_{\phi_{\mathsf{A}}} \pi\binom{R_{1}}{R_{2}}$$

with $\binom{S}{T} = \phi_B \circ \phi_A \binom{P_0}{Q_0}$

Uses Kani's Lemma in dim 4 to get

$$\psi(E[3^{\beta}]) = \ker(\psi)[3^{\beta}] = \ker(\widehat{\phi_B})$$

• Uses discrete log to retrieve m.

$$p = 3^{eta} N f + 1$$
 with $N = \prod_{i=1}^{n} p_i$
 $\langle P_0, Q_0 \rangle = E_0[N]$

 $\psi = \pi_*(\phi_B \circ \phi_A) \circ \phi_A \circ \phi_B$

• Need
$$N > 3^{\beta} \operatorname{deg}(\phi_A) \simeq 3^{\beta} \sqrt{p} \log(p)$$
.

Encryption & Decryption

- Alice knows ϕ_A and Bob E_A , $m \in \mu_2(N)$.
- Encryption:
 - Bob computes $\phi: E_A \to E_B$ $\deg(\phi_B) = 3^{\beta}$
 - Computes $\binom{R_1}{R_2} = [m]\phi_B\binom{P_A}{Q_A}$ with $\langle P_A, Q_A \rangle = E_A[N]$.
 - Sends E_B, R_1, R_2 .
- Decryption:
 - Alice computes ψ(E_B[N]) as

$$\psi \begin{pmatrix} S \\ T \end{pmatrix} = 3^{\beta} \operatorname{deg}(\phi_{A}) \mathsf{M}_{\pi}^{-1} \mathsf{M}_{\phi_{\mathsf{A}}} \pi \binom{R_{1}}{R_{2}}$$

with $\binom{S}{T} = \phi_B \circ \phi_A \binom{P_0}{Q_0}$

• Uses Kani's Lemma in dim 4 to get

$$\psi(E[3^{\beta}]) = \ker(\psi)[3^{\beta}] = \ker(\widehat{\phi_B})$$

• Uses discrete log to retrieve m.

$$p = 3^{eta} N f + 1$$
 with $N = \prod_{i=1}^{n} p_i$
 $\langle P_0, Q_0 \rangle = E_0[N]$

 $\psi = \pi_*(\phi_B \circ \phi_A) \circ \phi_A \circ \phi_B$

• Need
$$N > 3^{\beta} \deg(\phi_A) \simeq 3^{\beta} \sqrt{p} \log(p)$$
.

Key Update

- Alice knows φ_A and Bob E_A and (U_A, V_A) = E_A[3^β]
- $\underline{\mathsf{UG}}$: $\eta \in \mathbb{Z}_{3^{\beta}}$.
- Upk:
 - Computes $ho : E_A \to E'_A$ ker $(
 ho) = \langle U_A + [\eta] V_A \rangle$
- <u>Usk</u>:
 - Computes $\rho : E_A \to E'_A$ ker $(\rho) = \langle U_A + [\eta] V_A \rangle$
 - Find I_{ρ} using \mathcal{O}_{E_A} .
 - Find small prime ideal $I_{\phi'_A}$.
 - Use HD rep. to find $\mathcal{O}_{E'_{*}}$.

▶ More complex in reality.

Key Update

- Alice knows ϕ_A and Bob E_A and $\langle U_A, V_A \rangle = E_A[3^{\beta}]$
- <u>UG</u>: $\eta \in \mathbb{Z}_{3^{\beta}}$.
- Upk:
 - Computes $\rho: E_A \to E'_A$ $\ker(\rho) = \langle U_A + [\eta] V_A \rangle$
- Usk:
 - Computes $\rho: E_A \to E'_A$ $\ker(\rho) = \langle U_A + [\eta] V_A \rangle$

 - Find I_ρ using O_{E_A}.
 Find small prime ideal I_{φ'_A}.
 - Use HD rep. to find $\mathcal{O}_{E'_{A}}$.

Key Update

- Alice knows ϕ_A and Bob E_A and $\langle U_A, V_A \rangle = E_A[3^{\beta}]$
- $\underline{\mathsf{UG}}$: $\eta \in \mathbb{Z}_{3^{\beta}}$.
- Upk:
 - Computes $ho : E_A \to E'_A$ ker $(
 ho) = \langle U_A + [\eta] V_A \rangle$
- <u>Usk</u>:
 - Computes $\rho: E_A \to E'_A$ ker $(\rho) = \langle U_A + [\eta] V_A \rangle$
 - Find I_{ρ} using \mathcal{O}_{E_A} .
 - Find small prime ideal $I_{\phi'_A}$.
 - Use HD rep. to find $\mathcal{O}_{E'_{A}}$.
- More complex in reality.

References I

- Kyoichi Asano and Yohei Watanabe, *Updatable public key encryption with strong cca security: Security analysis and efficient generic construction*, Cryptology ePrint Archive, Paper 2023/976, 2023, https://eprint.iacr.org/2023/976.
- Daniel J Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith, Faster computation of isogenies of large prime degree, Open Book Series 4 (2020), no. 1, 39–55.
- Andrea Basso, Luciano Maino, and Giacomo Pope, *Festa: Fast encryption from supersingular torsion attacks*, Cryptology ePrint Archive, Paper 2023/660, 2023, https://eprint.iacr.org/2023/660.
- Wouter Castryck and Thomas Decru, *An efficient key recovery attack on sidh*, Annual International Conference on the Theory and Applications of Cryptographic Techniques, Springer, 2023, pp. 423–447.
 - Wouter Castryck and Frederik Vercauteren, *A polynomial-time attack on instances of m-sidh and festa*, Cryptology ePrint Archive, Paper 2023/1433, 2023, https://eprint.iacr.org/2023/1433.

13/17

References II

- Max Deuring, Die typen der multiplikatorenringe elliptischer funktionenkörper, Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, vol. 14, Springer Berlin/Heidelberg, 1941, pp. 197–272.
- Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin Wesolowski, *Sqisign: compact post-quantum signatures from quaternions and isogenies*, Advances in Cryptology–ASIACRYPT 2020: 26th International Conference on the Theory and Application of Cryptology and Information Security, Daejeon, South Korea, December 7–11, 2020, Proceedings, Part I 26, Springer, 2020, pp. 64–93.
- Pierrick Dartois, Antonin Leroux, Damien Robert, and Benjamin Wesolowski, Sqisignhd: New dimensions in cryptography, Cryptology ePrint Archive, Paper 2023/436, 2023, https://eprint.iacr.org/2023/436.
- Victoria de Quehen, Péter Kutas, Chris Leonardi, Chloe Martindale, Lorenz Panny, Christophe Petit, and Katherine E. Stange, *Improved torsion-point attacks on sidh* variants, Cryptology ePrint Archive, Paper 2020/633, 2020, https://eprint.iacr.org/2020/633.

References III

- Cyprien Delpech de Saint Guilhem, Péter Kutas, Christophe Petit, and Javier Silva, Séta: Supersingular encryption from torsion attacks., IACR Cryptol. ePrint Arch. 2019 (2019), 1291.
- Edward Eaton, David Jao, Chelsea Komlo, and Youcef Mokrani, Towards post-quantum key-updatable public-key encryption via supersingular isogenies, International Conference on Selected Areas in Cryptography, Springer, 2021, pp. 461–482.
- Tako Boris Fouotsa, Tomoki Moriya, and Christophe Petit, *M-sidh and md-sidh:* countering sidh attacks by masking information, Cryptology ePrint Archive, Paper 2023/013, 2023, https://eprint.iacr.org/2023/013.
- Tako Boris Fouotsa and Christophe Petit, *A new adaptive attack on sidh*, Cryptology ePrint Archive, Paper 2021/1322, 2021, https://eprint.iacr.org/2021/1322.
- David Jao and Luca De Feo, Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies, Post-Quantum Cryptography: 4th International Workshop, PQCrypto 2011, Taipei, Taiwan, November 29–December 2, 2011. Proceedings 4, Springer, 2011, pp. 19–34.

References IV

- Ernst Kani, The number of curves of genus two with elliptic differentials.
- Antonin Leroux, *Quaternion algebra and isogeny-based cryptography*, Ph.D. thesis, Ecole doctorale de l'Institut Polytechnique de Paris, 2022.
- Antonin Leroux, Verifiable random function from the deuring correspondence and higher dimensional isogenies, Cryptology ePrint Archive, Paper 2023/1251, 2023, https://eprint.iacr.org/2023/1251.
- Antonin Leroux and Maxime Roméas, *Updatable encryption from group actions*, Cryptology ePrint Archive (2022).

Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Benjamin Wesolowski, *A direct key recovery attack on sidh*, Annual International Conference on the Theory and Applications of Cryptographic Techniques, Springer, 2023, pp. 448–471.

Kohei Nakagawa and Hiroshi Onuki, *Qfesta: Efficient algorithms and parameters for festa using quaternion algebras*, Cryptology ePrint Archive, Paper 2023/1468, 2023, https://eprint.iacr.org/2023/1468.

Christophe Petit, Faster algorithms for isogeny problems using torsion point images, Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II 23, Springer, 2017, pp. 330–353.

Damien Robert, Fonctions thêta et applications à la cryptographie, Ph.D. thesis, Université Henri Poincaré-Nancy I, 2010.

_____, Evaluating isogenies in polylogarithmic time.

_____, *Breaking sidh in polynomial time*, Annual International Conference on the Theory and Applications of Cryptographic Techniques, Springer, 2023, pp. 472–503.

Jacques Vélu, *Isogénies entre courbes elliptiques*, Comptes-Rendus de l'Académie des Sciences **273** (1971), 238–241.