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ABSTRACT:

We present two new isogeny based cryptographic protocols: SQIPrime and SILBE. The first is a signature
scheme inspired by SQISign that relies exclusively on isogenies of prime degree, while the second is an
Updatable Public Key Encryption scheme based on M-SIDH and on the generalized lollipop attack. Both
protocols make extensive usage of the multiple isogeny representations used in cryptography.

Introduction

The discovery in Shor’s seminal paper [Sho94] of a quantum algorithm able to efficiently solve both
factoring and discrete logarithm problems highlighted the security risks presented by the development
of quantum computers and propelled the development of Post Quantum Cryptography. Isogeny-Based
Cryptography is a relative newcomer in the field of Post-Quantum Cryptography, as although it traces
its roots to Couveignes’ 1997 rejected paper [Cou06], it only started gaining serious traction in the late
2000s due to its inherent compactness and seemingly heightened resistance to quantum cryptanalysis,
reminiscent of Elliptic Curve Cryptography on which it builds upon. Instead of relying on scalar multi-
plication over elliptic curves, Isogeny-Based Cryptography employs rational maps between curves, aptly
named isogenies. These isogenies are interesting as they remain efficiently computable and have many
interesting structures. For example, the first efficient key exchange protocols proposed in [RS06] relied on
isogenies induced commutative group action, as this commutative group action stands resilient against
Shor’s algorithm while preserving essential properties to perform Diffie-Hellman key exchange.

Since its inception, the field has rapidly expanded and diversified. Isogenies, echoing Henri Poincaré’s
maxim that “Mathematics is the art of giving the same name to different things,” assume various forms
— rational maps, torsion subgroups, matrices, ideals between orders of quadratic or quaternion algebra,
edges in regular graphs, morphisms of lattices, and more. Leveraging this multitude of isogeny represen-
tation has been instrumental in constructing key exchange mechanisms [RS06, FJP11, CLM 18, FMP23,
...], public key encryption schemes [Mor23, BMP23, NO23, ...], signature schemes [GPS16, FKL"20,
DLRW23, ...] or hash functions [CGLO06].

In this thesis, we contribute to this evolving landscape by presenting a new isogeny-based signature
scheme named SQIPrime, alongside a novel updatable public key encryption scheme named SILBE. Both
leverage the versatility of the multiple isogeny representations. This thesis is organized into the following
chapters:

- Chapter 1, introduces all the necessary preliminaries on elliptic curves and isogenies that we will
use throughout this thesis.

- Chapter 2 presents a family of algorithms that are used to efficiently utilize isogenies under their
different representations. We build upon these algorithms to construct our cryptographic protocols.

- Chapter 3 details SQIPrime, a variant of the signature scheme SQISignHD based only on prime
degree isogenies.

- Chapter 4 details SILBE, an Updatable public key encryption scheme based on M-SIDH and on
the generalised lollipop attacks.

As you navigate through these chapters, we wish you a pleasant and insightful reading.
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Chapter 1

Mathematical background on elliptic
curves

Cryptography has always had deep roots in mathematics, a connection that became particularly apparent
with Public Key Encryption as the security of such cryptographic schemes is inherently tied to mathemat-
ical problems that are computationally hard in one way, such as the discrete logarithm or the factoring
problem. Understanding the mathematical underpinnings of cryptographic primitives and algorithms is
paramount, and this necessity is further underlined in the era of post-quantum cryptography. While the
factoring problem may be relatively straightforward to comprehend!, code-based or lattice-based cryp-
tography already demand a more profound mathematical knowledge and experience. The same holds for
isogeny-based cryptography, as it is grounded in algebraic geometry—an advanced domain of mathemat-
ics. The objective of this chapter is thus to define central concepts and highlight the core mathematical
properties of elliptic curves and isogenies. These properties will serve as the bedrock upon which we will
construct subsequent chapters.

Throughout this chapter, we denote K a general field and K its algebraic closure. Additionally, we also
consider field such that char(K) # 2, 3.

1.1 Elliptic curves

1.1.1 Equations

Before defining the notion of elliptic curve, we need to define the notion of projective space. Although
we most often work in the affine space, some properties of elliptic curves are easier to understand when
seeing them as subspaces of projective spaces.

Definition 1.1.1: Projective spaces

The n-th projective space P" is the set of equivalent classes over Fnﬂ\{()} under the following
equivalence relation.

(20, y&n) ~ (Yo, -+ ,Yn) = 3IXN€ K, \ # 0 such that x; = \y;

Lwhich is not at all the case of its cryptanalysis.



A point of P is noted [Xp : - - - : X,,] and the K-rational space P is the set of all [X( : - -+ : X,]
such that X; € K foralli=20,--- ,n.

To go from the projective space to the affine space K" (usually noted as A™), we use the standard
(de)homogenisation maps ¢;, that link A™ with the projective subset U; = {[XO i X Ee IE””|X¢ # 0}

Gi(@r, - mp) — [rr s mii s L@y e 2]
Xo Xic1 X1 n -1 X
Ao XY Xi 1 X Xiag:oor: X,
(Xi’ X, X, X, ¢; " ([Xo il 1 )

We now define elliptic curves using the Weierstrass equation.

Definition 1.1.2: Elliptic curves

An elliptic curve FE is defined as the subset of P? given by the zeros of the Weierstrass equa-
tion:
Y27 = X3+ AXZ? + BZ?

with A, B € K and such that 443 + 2782 < 0.
[0:1:0] is the base point of E.

Additionally, we say that E is defined over K whenever A, B € K and denote as F(K) the K-rational
points of E. Note that [0:1: 0] is the only point of E such that Z = 0.

The Weierstrass equation given above describe all elliptic curves whenever char(K) # 2,3. Using the
dehomogenizing over U, we can also define an elliptic curve over the affine space A? as follows.

E={(z,y)€ A2‘y2 = 2% + Az + B} U {0}

with oo the base point of E.

The reason we ask for 443 + 2782 to be non-zero is that we want E to be a smooth curve whose tangent
space is well-defined at any points of E, which is equivalent to having 443 + 2782 # 0. Curves given by
the Weierstrass equation such that 443 + 2782 = 0 are called singular curves.

=23z +3 y? =2® — 3z +2

i an
N ]

elliptic curve singular curve




1.1.2 Group structures

Definition 1.1.2 establishes that elliptic curves are regular projective varieties of dimension 1, like parabo-
las or hyperbolas. However, what distinguishes elliptic curves from other such varieties is their abelian
group structure. To be more precise, elliptic curves are categorized as abelian varieties of dimension 1.

Definition 1.1.3: abelian varieties
An abelian variety V is an algebraic variety with:
e a zero point 0 e V.

e a group law morphism*
+:VxV-—V

e an inversion morphism

V-V

and such that (V,0, +,4) has an abelian group structure.

%A morphism of varieties essentially consists in a change of variable given by homogeneous rational maps of
multivariable polynomials. See [Sil09, 1.3] for greater details.

This definition is straightforward but it is not clear how to find an abelian group structure on elliptic
curves. If we take two distinct points P,Q € E, what should be P + Q7 and how to do in such a way
that this is commutative?

The answer is given by the fact that there exists a unique line that pass throw both P and Q. If we
assume that this line passes through F at exactly one another point R. Then this point would be a good
choice to be defined as P + @. This is almost how the group law is defined as to ensure associativity, if
R =[X:Y : Z], then we must define P + @ as its inverse [X : =Y : Z]. Now, what occurs when P = Q7
As @ gets closer to P, we have that the line passing thought both points becomes the tangent of E at
the point P. If this line intersects E at another point, then we could define P + P similarly to how we
defined P + Q. This later point explain why we asked for elliptic curve to be smooth.

Q

%
N N

Figure 1.1: [DF17] Visualization of the group law of elliptic curve.

Now, the reason we can assume that the elliptic curve E and the line defined by P and @ will have an
additional intersection points comes from Bezout’s theorem.



Theorem 1.1.4: [Shal6, I11.2.2.2] Bezout’s theorem

Let Vi and Vs be two subsets of P? defined as the zeros of two distinct prime homogeneous
polynomials f; and fo. Then, V5 and V5 intersect at exactly deg(f1)deg(f2) points, counted with
their respective multiplicities.

As elliptic curves are given by Weierstrass equations, itself a polynomial of degree 3 and that a line is
of degree 1, the Bezout’s theorem ensures us that there are always 3 intersection points, P, and R,
meaning that our idea of addition is well-defined. By looking at the equation of both E and of the line
defined by P and @, we can properly define the group law and more generally the abelian group as
follows.

Theorem 1.1.5: Elliptic curve group law

Any elliptic curve E : y? = 2% + Az + B is an abelian variety of dimension 1 with:
e 0 as the base point o
e the inversion map given by i(x,y) = (z, —y)

e the group law given by (x1,y1) + (22,y2) = (x3,ys3) such that
Tr3 = )\2 — 1 — T2
ys = (1 —23)A — 11

Y2—Y1 :
th A= | mrm LT
w1 = 3xi+A h ;
2 otherwise

with the additional rule that P + i(P) = 0.

All the proof details can be found in [Sil09, section III.2] and even more as this theorem is proven for
elliptic curves over field of any characteristic. This significantly complexifies the equations.

Elliptic curves are thus abelian varieties of dimension 1, often called abelian curves. They are in fact
THE abelian curve, as following [Sil09, section II.3], we can show that any abelian curve of genus 1 is
in fact isomorphic to an elliptic curve. This essentially comes from the fact that there is an equivalence
between abelian curves and an object called the Picard group.? This result will be useful for the notion
of dual isogeny and to understand the difference between elliptic curves and higher dimensional abelian

varieties.

Theorem 1.1.6: [Sil09, II1.3.4] Abel-Jacobi isomorphism
Let E be an elliptic curve. Then, the Abel-Jacobi map

\: E — Pic’(E)

is an isomorphism.

2See [Shal6, TV.1 & IV.4] for a proper definition using Weil’s and Cartier’s divisors.



1.1.3 j-invariant

Still, two curves given by different Weierstrass equations can be isomorphism, so we need a method to
characterize elliptic curve up to isomorphism. This is why we introduce the notion of j-invariant.

Definition 1.1.7: j-invariant

Let E be an elliptic curve induced by y? = 2° + Ax + B. The j-invariant of E is defined as

443
(E) = 1728— 2
J(B) = 1128 e

At first glance, the notion of j-invariant describes a link between A and B but it is not striking that it
characterize isomorphism of elliptic curves, but it is the case.

Theorem 1.1.8: [Sil09, II1.1.4] j-invariant theorem

Let B :y? = 2%+ Ajxz + By and F : y? = 23 + Asx + By be two elliptic curves defined over K,
then
E~F < A, =p*A; and By, = u°B; with pe K*

This induces that
Ex~F=jFE)=jF)

J(E) =j(F)= E = F over a field L
with L a K-field extension of degree:
e dividing 6 if j(E) = 0.
e dividing 4 if j(E) = 1728.
e dividing 2 for any other j(F) € K.
Note that if K = K, then j-invariant and isomorphism are equivalent. The j-invariant is especially
interesting in cryptography as it enables us to define canonical representation of isomorphism class, i.e.,

fixing one Weierstrass equation among all possible to define elliptic curves of j-invariant j;. A common
canonical representation is given below but other representations are often used.

] Jo \ E; |
0 y?=a3+3
1728 v =a3+u
otherwise | y? = 2% + 350(1728 — jo)x + 250 (1728 — jo)?

Additionally, it is relatively straightforward to construct a curve that is not isomorphic to E but with the
same j-invariant. This curve is called the quadratic twist. This notion of quadratic twist is very handy
to work with torsion points in finite fields, as we shall see in section 1.3.2.

Definition 1.1.9: Quadratic twist

Let E : 4> = 22 + Az + B be an elliptic curve defined over K and let d € K be a not square
number. the quadratic twist of E, noted E? is the elliptic curve given by

El:dy? =2+ Az + B — y?> =2® + d*Ax + d°B



Note that j(EY) = j(F) and that E? and F are only isomorphic in K[v/d], not K.

1.2 Isogenies

The challenge we now face is that the concept of projective morphism does not adequately consider the
group structure inherent in elliptic curves. Therefore, we need to enhance our definition of morphisms for
elliptic curves. These refined morphisms are called isogenies. They possess significant and foundational
properties, which we will elaborate on in detail throughout this section.

1.2.1 Rational maps

We will initially introduce isogenies through their structure as morphisms of varieties, i.e. as ratio-
nal maps. While this representation is heavy, it is the most natural and facilitates the definition and
comprehension of several central concepts in isogenies.

Definition 1.2.1: Isogenies
Given X,Y two abelian varieties of same dimension defined over K, an isogeny is a map
p: X ->Y
such that:
e ¢ is a projective morphism defined over K.*
e ¢ is also a group morphism.
e ker(¢) is finite.

Additionally, two isogenies ¢ : E — F and 9 : B/ — F’ are isomorphic if there are isomorphisms
t: E=~FE and k : F = F’ defined over K such that the following diagram is commutative

¢

FE——F

E — F

¥

“meaning that it is given by homogeneous rational maps of multivariable polynomial that are defined over K.

Examples 1.2.2:

e The inverse map
[-1]: E—>E

(CL’,y) - (‘Tv _y)

e The [2] map BB

10



(2,) — (322 + A)? — 8xy? 122y*(32% + A) — (322 + A)® — 8yt
) 4y2 ) 8y3
2

e If K is of characteristic p, then, given E : y> = 23 + Az + B, we define E®) : y? =
23 + APz + BP. We have that j(E®) = j(E)?. Furthermore, the Frobenius map

7:E— E®

™ (2, y) = (2, y")

is an isogeny.

In general, the equations that generate projective morphisms are often not practical to work with. See
for example [Was08, section 3.2] for the equations of the scalar maps [n], with n € Z. Nevertheless, due
to the group preserving nature of isogenies, they exhibit a canonical form.

Lemma 1.2.3: [Sutl5, Lemma 5.25] Canonical form of isogenies

Let Ey : y? = fi(x) and Ey : y? = fo(x) be two elliptic curves and let ¢ : E; — E; be an isogeny
between the two. Then ¢ is uniquely characterized by the map

o) = (4330

with u(z) coprime to v(z) and s(z) coprime t(z), v*(z)|t*(x) and t?(z)|v*(z) f1(z).

Some isogeny properties are linked to properties of their canonical form. This is the case for the following
notions.

Definition 1.2.4: Degree and separability of isogenies

Given ¢ : E — F an isogeny in canonical form ¢(z,y) = (383, ;g))y)

e The degree of ¢ is given by

deg ¢ = max {degu(zx),degv(x)}

e ¢ is said separable if

Otherwise, it is inseparable

Following this definition, we have that [—1] is separable and of degree 1, that the [2] map is of degree 4
and separable while the Frobenius isogeny is of degree p and is inseparable. The Forbenius isogeny is in
fact the quintessential insperable isogeny as given by the following theorem.

11



Theorem 1.2.5: [Sut15, Theorem 6.4] Decomposition of isogeny
Let ¢ : E — F be any isogeny. ¢ can be decomposed as

¢=¢sor"
with ¢g a separable isogeny and 7w the Frobenius isogeny.
This induces that deg¢ = deg(¢ps) - p™. This value p™ is sometimes called the inseparable degree
deg;(¢) = p™. =™ is a slight abuse of notation to represent the isogeny between E and E®") given
by the composition of Frobenius isogeny. Theorem 1.2.5 has many corollaries such that it induces that

all isogenies are separable if char(K) = 0. Among all other, the following two are the bedrock of Isogeny
Based Cryptography.

Corollary 1.2.6: [Sut15, Corollary 6.8] Kernel-degree connection
Let ¢ : E — F be any isogeny defined over K. Then

| ker ¢| = deg s

Corollary 1.2.7: [Sut15, Corollary 6.10] Degree of composition

Let ¢ : E — F and ¢ : F' — G be two isogenies. Then:
|ker(ip 0 ¢)| = | ker ¢| - [ ker ¢|

deg; (¢ o ¢) = (deg, ¥)(deg; ¢)
deg(¢p 0 ¢) = (deg))(deg ¢)

1.2.2 Vélu’s formulas

The canonical form characterize isogenies as rational maps, but this representation remains somewhat
impractical. We would therefore like to represent isogenies in a more efficient and compact manner. We
have seen in theorem 1.2.5 that isogenies are composed of a separable part and of the Frobenius isogeny.
Furthermore, we have shown in corollary 1.2.6 that their degree was fully determined by their kernel, but
this link between isogeny and kernel is deeper. If we just see isogenies as surjective group morphism, then
the fundamental theorem of isomorphism tells us that the image curve must be isomorphic to E/ker(¢)
i.e. that ¢ is entirely determined, as a group morphism, by its domain and its kernel. This intuition can
be proven right using the Vélu’s formulas. We will first state the following theoretical theorem.

Theorem 1.2.8: [Sil09, I11.4.12]

Let E be an elliptic curve defined over K and let G be a finite subgroup of E. Then, there exists
an isogeny ¢
¢:E— FE/g

with ¢ unique up to isomorphism.

12



Corollary 1.2.9: Prime factorisation of isogenies

Let ¢ be a separable isogeny of degree d. Seeing d as H?Zl p; with p; prime numbers, then ¢ can
be written as

¢ = Oi10i
with ¢; being isogenies of prime degree p;.
Proof of Corollary 1.2.9:

This proof is done recursively over d. Consider G = ker(¢). It is a finite abelian subgroup of E. Therefore,
using Cauchy’s theorem, we can find P; € G of order p;. Using theorem 1.2.8, we can thus define.

¢1: E— E/p,y

Then, the set ¢1(G) is a subgroup of E/¢py of order d/p, = [Ty pi so we can recursively write the
isogeny generated by ¢1(G) as OF_5¢;. By composing both maps, we get our desired decomposition.
[J1.29

Theorem 1.2.8 is mathematically elegant but it remains somewhat theoretical. This is where Vélu’s formu-
las come into play, significantly enhancing practicality. Vélu’s formulas render theorem 1.2.8 computable
by providing the following equations.

Theorem 1.2.10: [Vél71] Vélu’s formulas
Let E : y2 = 22 + Az + B be an elliptic curve defined over K.
e Let (20,0) € E. Set t = 323 + A and w = xot

¢:FE—F

—zox +t (22 —x0)% +1t
Tr — X ’ (Z*l’o)Z

o(z,y) = <x2

is a separable isogeny with ker¢ = {0, (z0,0)} and F given by y? = 23 + A’z + B’ with
A'=A—-5t and B’ = B + Tw.

e Let G c F be a finite group of odd order. Then, for all Q € G, set

tg =3zq + A wqQ = Qyé +itgxg
t 2y¢
r(z) =z + Z ( © @ 2)
Then,
¢:FE—F

is a separable isogeny with ker ¢ = G and F given by y? = 23 + A’z + B’ with:

A=A-5| > tg B =B+7| > wo
GeG\0 GeG\0

13



Note that if the points of G are defined over K, then ¢ is defined over K. In fact, Vélu’s formulas show
that, up to isomorphism, any isogeny is defined over K if and only if its kernel is a subgroup of E(K).

1.2.3 Dual isogeny

Another central notion of isogenies of elliptic curves is that they induce an inverse like isogeny named
the dual isogeny and defined as such

Definition 1.2.11: Dual isogeny

Let ¢ : E — F be an isogeny between two elliptic curves. The dual isogeny of ¢ noted quS is an
isogeny defined as such.

6:F —FE

P 3 [deg,(9)]Q— Y [deg;(¢)]Q
Q=¢"1(P) Qeker(¢)

This definition is in fact induced by the composition F' 2, Pic’(F) LA Pic’(E) X, F, with A the
Abel-Jacobi map. Note that, thanks to the Vélu’s formulas, if ¢ is defined over K, then so does ¢.
Theorem 1.2.12: [Sil09, II1.6.2]
Let ¢,k : B9 — E7 and ¢ : E1 — Fs be isogenies.
1. Inverse: ngS is the unique isogeny up to isomorphism such that

¢ o ¢ = [deg(¢)] and ¢ o ¢ = [deg()]

2. Composition:

do =100
3. Sum: ~
Pp+Krk=0+R

4. Multiplicative maps:

This implies that deg([m]) = m?.

5. Duality:

6. Degree: R
deg ¢ = deg ¢

Another important notion in isogeny based cryptography consists in isogeny pushforwards. They are
defined using Vélu’s formulas.

14



Definition 1.2.13: Pushforwards
Let ¢ : E — F and ¢ : E — F’ be two isogenies of coprime degree. The pushforward of v by ¢
is the isogeny ¢4t : F' — E’ defined by ker(¢41)) = gb(ker(w)).

Note that this definition is in line with the universal pushforward property, meaning pushforwards they
are the unique isogenies up to isomorphism such that the following diagram is commutative.

¢

E———F

(4 bx1)

F/ w* ¢ E/

1.3 Endomorphism rings

We now study the ring structure of elliptic curve endomorphisms. It is indeed central in many cryptosys-
tems such as [CLM ™18, FKL"20, ...]. This section consists only of a basic introduction, as we will delve
more into details during section 1.4.2. We also detail some properties of torsion points.

1.3.1 Order

Definition 1.3.1: Endomorphism ring
Let E be any elliptic curve defined over K, The endomorphism ring End(F) consists in
{¢: E — E an isogeny} u {0}

with 0 corresponding to the zero map and the multiplication induced by composition.
Endg (E) is the subring consisting of endomorphism defined over K.

We have by definition that Z =~ {[n]|n € Z} < End(E). This induces that End(F) is of characteristic 0.
The notion of degree for 0 is usually defined as 0 to remain consistent with corollary 1.2.6. The degree of
0 this can be used to show that End(FE) is an integral ring as ¢b = 0 would be impossible if one of ¢ and
1 were not 0. In addition to the degree, endomorphisms are described by another quantity, their trace.
The trace and degree are in fact sufficient to uniquely characterize any endomorphism up to duality.

Definition 1.3.2: Trace of an endomorphism

Let E be any elliptic curve and let End(E) be its endomorphism ring. The trace of an endomor-
phism « € End(F) is defined as
tr: End(F) —> Z

tr(a) =a+a=deg(a+1)—dega—1
Following theorem 1.2.12 and corollary 1.2.7, we have that tr(a + 8) = tr(a) + tr(8) and deg(af) =
deg(a) deg(B). We now restrict our field K to be a finite field I, with ¢ = p™. We then have that E(F,

can be seen as ker(7"™ — 1) as any element x € F, can be seen as an element = € F, such that 27 — 2 = 0.
Let mg be #™ with 7g € End(F). g can be used to compute the size E(F,).

15



Theorem 1.3.3: Hasse’s Theorem
Let E be any elliptic curve defined over ;. Then,
[E(Fq)|=q+1—t
with ¢ = tr(7g) and |t| < 2,/q.
Proof of Theorem 1.3.3:
As previously explained, we have that
E(F,) = {P € E over F|rp(P) — P = 0} = ker(rp — 1)

Furthermore, as mp is inseparable and [—1] is separable, we have that g — 1 is separable, meaning
by corollary 1.2.6 that deg(rgp — 1) = |ker(rg — 1)| = |E|. As deg(rg — 1) = (ng — D)(7g—1) =
degmp — tr(wg) + 1, we get the equation

[E(Fy)l = q+1—tr(me)

Now, let us show that [tr(7g)| < 2v/t. To do so, consider a,b € Z x Z*. The endomorphism ang — b has
degree

~

deg(arg — b) = (arp — b)(7pa — b)
= awE@& — aﬂ'E/I; — b@a + b/l;)
= a*deg(np) — arpb — bipa + b*

= a’q — abtr(rg) + b?

As deg(amg — b) = 0, we have that

0< (%)2(1 + (%) tr(mp) + 1

i.e. that the for all values of v € Q, qv? — vtr(mg) +1 = 0. As Q is dense in R, this means that the
determinant of the polynomial is strictly smaller than 0 i.e, that

tr(rp)? —4¢ <0 <= |tr(7p)| < 24/q

[]11.3.3

Furthermore, the bound of [tr(7g)| < 2,/q is tight, as we can find elliptic curve of any trace inside this
bound.

Corollary 1.3.4:
Let E be any elliptic curve defined over IF; and let E4 be its quadratic twist. Then
tr(mga) = —tr(mg)

Proof of Corollary 1.3.4:
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Inside F, the product of two non-square numbers is a square. Therefore, for any value = € F,, we either
have that 2% + Az 4+ B has a root, meaning that = defines two points in E, or that it has not, and it then
defines two points in £¢. Using Hasse’s Theorem, we get that

2q = 2|Fy| = |E(q)| + |E%(q)] — 2 = 2q — tr(np) — tr(7pa)

proving this corollary. []1.34

Now that we have introduced the trace of endomorphims and its immediate properties, we see it strongly
restricts the possible form of End(E), as it can only be an order of very specific algebras. Let us first
define the notion of order.

Definition 1.3.5: Order

Let A be a K-algebra of finite dimension and of characteristic 0. An order of A, denoted O, is
a strict subring of characteristic 0 such that O ®; K = A. An order is furthermore said to be
maximal if it is not contained in another order.

Among all algebras, we are particularly interested in the following two families:
¢ Quadratic fields Q(+v/d): A 2-dimensional Q-algebra with basis (1, ) and

a’=d

If d > 0, it is a real quadratic field, otherwise, it is a complex quadratic field.

e Quaternion algebras B, ,.: A 4 dimensional Q-algebra with basis (1, a, 8, @) and
o®>=a  P=-p  af=—pa

Theorem 1.3.6: [Sil09, I11.9.3]

Let E be an elliptic curve. Then,
e End(F) = Z if char(K) = 0.
e End(E) is an order of a complex quadratic field Q(+/d)

e End(F) is an order of a quaternion algebra B, o

This theorem can also be refined over Endg (E) when K = F,. For any curve E defined over F, such that
np ¢ Z, we can prove that Endp, (E) is an order of Q[V/d], with d = tr(rg) — 4¢. See [Sut15, theorem
14.6] for a proof.

1.3.2 Torsion points

To close this section, we will discuss torsion points. Following Vélu’s formulas, we have that isogenies
are given by their kernels, finite subgroups of elliptic curves. Furthermore, following theorem 1.2.12, we
have that the kernel of isogeny of degree d are subgroups of the kernel of the scalar endomorphism [d],
i.e. they are subgroup of the torsion subgroups.

3This notation is inherited from ramification theory. Indeed, we are especially interested in quaternion algebra that are
ramified at points p and 0. See [Voi2l, chapter 14] for more details.
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Definition 1.3.7: n-torsion subgroup

let E be an elliptic curve, the n-torsion subgroup E[n] is given as

E[n] = ker ([n])

Theorem 1.3.8: [Sutl5, Theorem 7.1]

Let p the characteristic of K and ¢ be a prime number.

7t or 0 ifp=
0 _ » p=q
Elg] { Zige x Lge otherwise

Note that using the Chinese remainder theorem, theorem 1.3.8 characterizes the group structure of E[N]
for any N € N*. The group structure of E[N] in conjunction with Vélu’s formulas tells us that, up to
isomorphism, there are exactly £ + 1 isogenies of prime degree ¢, as there exists only £ 4+ 1 subgroups of
order ¢ in Z2. If we set P, @ a basis of E[{], we can characterize all these groups as follows.

<P>7<P+Q>7<P+2Q>"" 7<P+(£*1)Q>7<Q>

Furthermore, any isogeny ¢ : E — F restricted over torsion points define a Zy-linear applications
@|gn) : E[N] — F[N], meaning that we can also represent the action of isogenies over torsion points as
matrices of dimension 2.

This representation is especially useful when correlated with the Cauchy interpolation theorem [Bie53],
as it enables easy characterization of isogenies. To do so, we use the fact that the map /deg(—) defines
a norm over the space of all isogenies between two elliptic curves E and F'. This is because the degree
map is positive definite quadratic form [Sil09, V.1.2].

Corollary 1.3.9:

Let ¢, : E — F be two isogenies of maximal degree m and let N be an integer such that
N = 24/m + 1. Then

¢|E[N] = z/J|E[N] = ¢=1

Proof of Corollary 1.3.9:  Assume that ¢ # 1. Then, using the triangular inequality over ¢ and 1, we
get that

deg(6— ) < (/dea(d) + \/dea () < 4m

meaning using corollary 1.2.6 that | ker(¢—1)| < 4m but ¢|grn = 1| N implies that E[N] < ker(¢—1))
and thus that 44/m + 1 < 0, a contradiction. 1139

Finally, to finish this section, we will have a small word about elliptic curve pairing. Pairing are bilinear
and non-degenerative maps between curves to finite subgroup. Among all pairing, we will essentially use
the Weil’s pairing ey as defined in [Sil09, II1.8], but other pairing exists and are used in cryptography
such as the Tate-Lichtenbaum pairings.[Was08, 3.4]

1.4 Supersingularity

We have seen in theorem 1.3.8 that there are two types of elliptic curves, those such that E[p] = Z,
and those such that E[p] = 0. Similarly, we also saw in theorem 1.3.6 that they were curves whose
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endomorphism ring was an order of an imaginary field and those whose endomorphism ring was an order
of a quaternion algebra. It occurs that those separations are in fact characteristic of the same notion,
the supersingularity.

1.4.1 Group structure
Definition 1.4.1: Ordinary/Supersingular curves

Let E be an elliptic curve over K, with p = char(K).
e Eis ordinary if E[p| = Z,
e F is supersingular if F[p] =0
A central observation is that supersingularity is preserved by isogenies. This means that due to their group
preserving structure, for any isogeny ¢ : E — F, F' is supersingular if and only if F is supersingular.
Proposition 1.4.2:
Let E an elliptic curve defined over K.
e If E is supersingular, then j(E) € F 2.

e FE is supersingular and is defined over Fpn <= tr(ng) =0 mod p.

Proof of Proposition 1.4.2:

e Using theorem 1.3.8 and corollary 1.2.7, we have that

2 e F=1o07

Elp] =0 = [p]=ro7

with ¢ : 72(E) = E an isomorphism, meaning that j(E) = j(7?(E)) and therefore that

Thus, j(E) € Fpe.

e We note that tr(rg) is inseparable if and only if 7z inseparable if and only if 7 is inseparable, i.e.
if and only if E is supersingular. Then

— If tr(mg) is inseparable, then, using corollary 1.2.7, p cannot be coprime to tr(mwg). Thus,
tr(rg) =0 mod p
— If tr(mg) = 0 mod p, then tr(ng) = [k] o [p] = [k] o T o 7, meaning that it is separable.

[]1.4.2

Proposition 1.4.2 tells us that supersingular curves are rare. Indeed, the first point gives us that they
are finitely many supersingular curves up to isomorphism and the second point gives us that they are
restricted to only a handful of possible traces. Nevertheless, those strong restrictions enable us to precisely
characterize supersingular curve in both number and group structure.
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Theorem 1.4.3: Number of supersingular curves

p=11 mod 12
p=>5,7 mod 12
p=1 mod 12

S = N

|{j € ]Fp2|Ej is supersingular}‘ = [%J +

’{j € Fp‘Ej is supersingular}‘ = O(y/p)
A full proof using Hasse invariant is given in [Sil09, IV 4.1]. The additional points of the first equation

are in fact given by j(E) = 1728 if p =3 mod 4 and j(F) = 0 if p = 2 mod 3. Following theorem 1.1.8,
both of these curves have several additional properties.

Theorem 1.4.4: Group structure of supersingular curves

Let E be a supersingular curve defined over F,,2¢. Let E(F,) be the F,-rational points with ¢ = p™.

o If n is odd, then tr(mg) = 0 and
E(F,) = Zyi

e If n is even, then

— tr(mg) = +2,/q and
E(Fq) = Zﬂ—l X Zﬁ—l

— tr(mg) = —2,/q and
EFq) = Z q+1 x Zg+1

%This ensures that we do not consider the special twists of j = 0 and j = 1728.

There are different group structures when we consider p = 2,3 or when we look at the special twists of
j = 1728 and j = 0. See [AAMI18, MVO91] for a complete list and proof. Supersingular curves and
isogenies can be represented as graphs.

Definition 1.4.5: Supersingular isogeny graphs

Given p and [ two prime number. We define the /-th supersingular isogeny graphs g;; as a
graph with

e vertices corresponding to the supersingular j-invariant in IE‘ZQ,.

e edges corresponding to isogenies of degree £ up to isomorphism.
Following theorem 1.3.8, we have that Q’f; are £+ 1-regular graph and are in fact Ramanujan graphs [Piz90].
Those graphs have many applications in theoretical computer science, as expander graphs, thanks to their
pseudo-randomness properties.
1.4.2 Deuring correspondence

Now that we have properly defined supersingularity, we now go back to endomorphism ring and see that
supersingularity is intrinsically linked with quaternions. In fact, Deuring proved in [Deu4l] that both
supersingular curves and their isogenies were equivalent to maximal order and linking integral ideals of
quaternion algebras.
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Figure 1.2: Representation of G3y9, Gipo and Giog

Theorem 1.4.6: [Voi21, Theorem 42.1.9]

Let E be a supersingular curve and let O =~ End(E) be the corresponding order of a quaternion
algebra B, . Then:
Op is a maximal order of B, o

—1 p=3 mod4

with B, o given by b> = —panda =< —2 p=>5 mod 8 with g a prime such that (?) =—1.
—q p=1 mod8

Example 1.4.7: Endomorphism ring of j(E) = 1728

Let p = 3 mod 4, then the curve Ej795 is supersingular and its endomorphism ring correspond to

the maximal order O1795:

1+4idj
2

with i : (z,y) = (—z,+/—1y) and j = 7 the Frobenius endomorphism.

Z

. i+
01728:Z+ZZ+?JZ+

The algebra B, o, is unique up to isomorphism. We can thus see supersingular curves as maximal orders
of By oo. We now need an oriented algebraic object that links two maximum order of By, «, similarly to
what isogenies do. This object is the notion of integral ideals.

Definition 1.4.8: Integral ideals

Let B, be a quaternion algebra. Let ai,---,as € By be linearly independent elements.
I ={ay, - ,a4yis a fractional ideal.

e the norm of I:

n(I) = ged ({n(a)|a € I})
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e The left/right order of I:
Or(I) = {ace Bpﬁoo’af c I}
Or(l) = {a e By |lac I}
I is denoted as an (O (1), Og(I))-ideal
e We say that I is integral if I € Op(I).
We see that order of By, o, are just integral ideals that hold the unit element, i.e. 1 € I. Integral rings
links maximal orders using the following proposition
Proposition 1.4.9
Let I, J be two integral ideals.

e Both O (I) and Or(I) are maximal orders.

OL(IJ) = OL(I) and OR(IJ) = OR(J)

OL(T) = OR(I) and OR(T) = OL(I)

The proof of the first point can be found in [Voi21, 10.4.2], while the others points are straightforward
consequences of the definition.

Coming back to our elliptic curves, we can go from integral ideals to isogenies and reversely using the
following tools.

Definition 1.4.10:

e Let ¢ : E — F be an isogeny between two supersingular curves. Let Op and Op be the
maximal orders of B, o, corresponding to End(E) and End(F'). The kernel ideal of ¢ is
defined as

I, = {a € (’)E’ a(ker(¢)) = 0}
e Conversely, given I an (Og, Op)-ideal, it induces an isogeny ¢; : E — F given by

kerg; = E[I] = {Pe E ‘ a(P)=0Vaelf

In both cases, we have that, up to isomorphism, I, = I and ¢, = ¢. Deuring showed in [Deud1]?* that
this transformation induced a contravariant equivalence.

4See [Voi2l, section 42.2 & 42.3] for a detailed proof.
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supersingular j-invariants over [ maximal orders in B,

E Og
bo Lyly
deg(¢) n(ly)
¢ Iy
Vi [Ls]ely = s Lo (Ls 0 1)
~ € End(F) Ogy

Furthermore, a property that we will often use is the fact that for any ¢ : E — F an isogeny such that
¢ = por with ¢ = deg 7 coprime to deg p, then as ker(r) = ker(¢) n E[q], we get that

I, :I¢+(9Eq

This overview of the Deuring correspondence concludes this chapter. Among the important fields of
elliptic curves that we did not discuss is the notion of Complex Multiplication (CM). For the interested,
a good reference is [Sil94, chapter 2]. CM and volcanology is the basis of an important part of Isogeny
Based Cryptography, based on the group action of the endomorphism ring over gﬁ. See for example
[RS06, CLM*18, BKV19, ...]. Speaking of cryptography, to manipulate all theses mathematical objects,
we need efficient algorithms which is the subject of our next chapter.
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Chapter 2

Toolbox: isogeny representations

Thanks to the previous chapter, we are now familiar with the mathematical properties of isogenies, but
we omitted their algorithmic aspects. Indeed, as we desire to design isogeny based cryptosystems, we
need standard tools and algorithms. This necessity is further accentuated by the multiple representations
of isogenies that we saw in chapter 1, as separable isogenies can be represented up to isomorphism as
rational maps (lemma 1.2.3), kernels (theorem 1.2.10), matrices (corollary 1.3.9) or as ideals (section
1.4.2). However, before delving into the intricacies of these representations, it is essential to establish a
clear definition of what we mean by the term ”representation.”

Definition 2.0.1: Efficient isogeny representation

Let ¢ : E — E’ be an isogeny defined over F,. An efficient representation of ¢ is given by a
couple (D, A) with

e D some data of size pon(log(dcg(qS)), 1og(q)) that define uniquely the isogeny ¢.

e A an universal algorithm independent of ¢ that, on input P returns ¢(P) with P e E(F )
in poly(k log(q), log(deg gb))

An efficient representation that can just compute points P of order coprime to N is called an
N-efficient representation.

Examples of standard efficient isogeny representation are:

e 71 : F — EW® the Frobenius morphism as given by its rational maps.

e [n]: E — E all scalar maps with n € Z using, for example, Montgomery method [HM21, section
3.3].

Both of theses efficient representations are based on rational maps, but this does not scale to all isogenies
as following lemma 1.2.3, the canonical representation of a separable isogeny needs O(deg(¢)log(q))
space, which is not in line with definition 2.0.1. In this chapter, we will discuss three different efficient
isogeny representations.

e The kernel representation, arguably the most widely used in Isogeny-Based Cryptography due to
its compactness.

o The ideal representation, that is inherited from the Deuring correspondence’.

Land more generally, from complex multiplication, but all our scheme will be based over quaternion algebras.
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e The HD representation, that is based on matrices and on higher-dimensional isogenies.

2.1 Kernel representation

The first and arguably main representation of isogenies that is used in cryptography is the kernel rep-
resentation. It makes full usage of theorem 1.2.8. The idea is to represent an isogeny ¢ : £ — E’ of
degree d as a point K € E[d] such that (K) = ker(¢). To compute ¢(P), we just use Vélu’s formulas
but this method is not an effective representation of ¢ as Vélu’s formulas are in O(deg¢) and not in
O(log(deg qS)) The trick is to use corollary 1.2.9. Instead of using Vélu’s formulas once, it is far more
efficient to use Vélu’s formulas over the decomposition of ¢ = O ¢; with ¢; isogenies of degree p; such
that deg¢ = [[;~, p;- This can be done using the following algorithm.

Algorithm 1 KernelTolsogeny
Input: E the domain curve, K a generator of ker(¢) and d = [, p; the degree of ¢.
Output: ¢ the isogeny, F' the codomain of ¢.

1: Set E=FE, K' =K

2: For j =1 to m:

3 ¢, BV «— Vélu’s formulas(Ej_l7 (Y11, p,;]Kj_l,pj)

4

5

K7 «— ¢;(K771)
: return Q2 ¢;, Ep,.

O, ¢; is a slight abuse of notation, as it does not compute the composition of all ¢; which would be
a wasteful operation. Instead, it sends all distinct ¢; separately that are then applied sequentially when
evaluating.

Let deg(¢) = d be B-smooth, meaning that all prime factors of d are smaller than B, then Kernel-
Tolsogeny returns an evaluation of ¢ that is in O(logp(d)B) = O(Blog(d)log(B)) field operations?.

This induces that if d is O(log(d)) smooth, then KernelTolsogeny is an efficient evaluation algorithm.
We can thus define the kernel representation as such.

Definition 2.1.1: Kernel representation
Let ¢ : E — E’ be a cyclic® isogeny of smooth degree d. Its kernel representation consists in:
e K € E[d] such that (K) = ker(¢).

e The KernelTolsogeny algorithm.

%i.e. its kernel is a cyclic group.
It is important to say that the algorithm KernelTolsogeny that we presented here is by no means
optimal, and many acceleration mechanisms have been developed.

1. [FJP11, section 4.2.2] proposed to use computational strategy based on discrete equilateral triangle
to not perform wasteful multiplication and additions.

2. [BFLS20] proposed v/élu, a speedup that enabled computation of the Vélu’s formulas in O(+v/7).
Due to some hidden constant, this speed-up is only significant for primes greater than 100.

2Note that this computation does not consider the computational cost of adding and multiplying over elliptic curves.
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3. Finally, other interesting speedup method consists in using other parameterization of elliptical
curves, such as Montgomery curves [OM21].

Using kernel representation, we can thus easily compute smooth isogenies between two curves. On the
contrary, finding an isogeny between two curves is believed to be hard. This gap induces the central
problems in Isogeny Based Cryptography. We give here its restriction to supersingular curves.

Problem 2.1.2: Isogeny walk problem

Given E, E’ two supersingular curves, find ¢ : E — E’ an isogeny of smooth degree.

The term walk comes from the fact that one can see an isogeny of degree £* as a walk over the graph gf;.
In some cases, the degree of the linking isogeny is known. This induces the following problem.

Problem 2.1.3: Explicit isogeny problem

Given E, E’ two curves isogenenous of degree d, compute ¢ : E — E’ of degree d.

The best known generic algorithm [DFHPS16] that solve explicit isogeny problem is in O(d?). A question
nevertheless remains. How can we ensure that our torsion points and thus our kernels are available in

[Fp2r, with k = O(log p) a small power?

2.1.1 Accessible torsion points

To answer that question, we will make use of the supersingularity and more especially of the group
structure of E(F,2), as given by theorem 1.4.4. The following point is one of the reason we often use
supersingular curves when working in Isogenies Based Cryptography.
First, we have that all supersingular curves E are defined over [Fp,2. Thus, if we assume that tr(7g) = 2,/p,
then via theorem 1.4.4 we have that

E(F,) =7, = E[p—1]
Furthermore, using proposition 1.3.4, we have that the quadratic twist of £, E? is such that tr(rg) =
—2,/p and thus that

BY(Fy2) = Zysy = Elp +1]

Then, by using theorem 1.1.8, we can map the points in E4[p + 1] to points in E(F,4) in such a way that
the z-coordinate remains in F,2. This therefore means that we have the guaranty that all torsion points
whose order divide p? — 1 are easy to access. This ease of access is extremely valuable in Cryptography
as we can choose prime number p such that the desired torsion points are divisors of p> — 1 and thus
ensure that they are easy to access. This is the basis for the following algorithm.

CanonicalTorsionBasis Using those easy to access torsion points, the CanonicalTorsionBasis ef-
ficiently computes a basis (P, Q) = E[N]. To do so, it simply samples points at random in E(F,2) or
Ed(Fp2). To ensure that this method is deterministic, the sampling is performed deterministically. There
exists many algorithms to find torsion basis, depending on the cases. A good example in the general case
is [MMRV09], while [ZJP17] is very efficient for large power of 2 or 3.

Let’s now give an example to see how the kernel representation can be used in cryptography with SIDH.
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2.1.2 SIDH

Initially proposed in [FJP11], SIDH? is an isogeny based key exchange mechanism. The main idea behind
SIDH is to use the universal property of pushforwards. Indeed, if Alice and Bob compute ¢4 and ¢p two
isogenies of coprime degree with the same domain, then they can compute their respective pushforwards,
namely (¢4)+¢p and (dp)«d4 and gain a shared secret, the codomain of both pushforwards.

Let the SIDH public parameter be as follows:

o p =107 f—1 a prime number with £4 and {p coprime and ¢ ~ (77.
e F a supersingular curve defined over F,2.

o (Pa,Qa) a basis of Eo[¢5"]

e (Pp,Qp) a basis of Ey[(7].

SIDH
Alice(pp) Bob(pp)
54 s Lya $B <5 Lyop
Rg < Pa+[54]Qa Rp <« Pp +[sB]QB
¢4, Ea — KernelTolsogeny (E, Ra, {5") ¢B, Ep «— KernelTolsogeny(E, Rg,{}F)
Sa— ¢a(Ps),Ta — ¢a(QB) Sp < ¢B(Pa), T < ¢5(Qa)
Ea,54,Ta
Ep,Sp,Ts
Us <« Sp + [s4]TB U «— Sa+ [sB]TA
a, Ex < KernelTolsogeny(Eg,Ua, (5") Yp, Ex — KernelTolsogeny(E, U, (77)
K < KDF(j(EK)) K « KDF(j(EK))

This protocol is correct because
ker g = (pp(Pa) + [54]05(Qa)) = (dB(Pa + [54]Q4)) = ¢5(ker(¢a)) = ker ([¢5]+Pa)
ker g = (pa(Pp) + [sBloa(QB)) = (dpa(Pp + [s5]QB)) = da(ker(dp)) = ker ([pa]«dp)

Therefore, due to definition 1.2.13, the following diagram is commutative

E &) Ep
ba ha

EA%'EK

SIDH has many advantages. It is simple to understand, easy to implement and has very small key size.
Its key security reduces to the following variant of the explicit isogeny problem.

3Supersingular Isogeny Diffie-Hellman
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Problem 2.1.4: Supersingular isogeny problem with torsion point information

Let ¢ : E — E’ be an isogeny of degree d between supersingular curves and let {(P,Q) = E[N]
with N coprime to d.

Given P, Q, ¢(P), #(Q), retrieve ¢.

It is important for N and d to be coprime, as otherwise, we would trivially gain partial knowledge of
the kernel of ¢. For example, if we know ¢(E[d]), then as ¢(E[d]) = ker ¢, we can compute ¢, evaluate
&(E'[d]) and thus retrieve ker(¢).

Since SIDH was the underlying architecture basis for SIKE, a candidate to the NIST Post-Quantum
cryptography standardization effort, its security analysis was widely studied. Some important works are
[GPST16, FP21] that proposed adaptative attacks with one dishonest party. [Pet17] proposed the idea
of lollipop attacks that is efficient over unbalanced SIDH, meaning that Eﬁ*“ > EgB. Those attacks were
further improved in [dQKL"20]. We will detail them more precisely in chapter 4. Finally, it was proven
in [CD23, MMP*23, Rob22a] that supersingular isogeny problem with torsion point information was easy
using higher dimension isogenies and high dimension representation of isogenies, as we shall see in section
2.3. Countermeasures have been proposed [FMP23, BF23, ...] but they all come with a huge overhead.

2.2 Ideal representation

Using the Deuring correspondence, we know that an isogeny can be represented as an integral ideal of
B, » linking maximal orders of B, o,. Finding which order correspond to which curve is believed to be
hard. This problem is in fact a central problem in Isogeny Based Cryptography.

Problem 2.2.1: Endomorphism problem

Let E be any supersingular curve defined over I, find a nontrivial® endomorphism of E.

%.e. not « € Z

It was proven in [PW23] that the endomorphism problem was equivalent to the problem of retrieving a
full basis of Op. It was also proven in [Wes22] that the endomorphism problem and the isogeny walk
problem are equivalent.

2.2.1 Endomorphism basis

An important point to see is that if we have an efficient representation for aq,--- , a4 a basis of O, then
we can construct an efficient representation for all v € End(E), as v = 3.;_, [ai]e;. This central property
is the motivation for the notion of evaluation basis.

Definition 2.2.2: Evaluation Basis

Let Og be a maximal order of B, o, we define an evaluation basis of Og, denoted Of as:
e A basis aq,- -, a4 such that
O = 1 Z + asZ + a3Z + csZ
e An isomorphism § : End(E) =~ O such that any 6~!(«a;) has an efficient evaluation.

An evaluation basis that can just compute points P of order coprime to N is called an N-
evaluation basis.
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Apart from Oy and O1728, the latter given in example 1.4.7, finding ex nihilo an evaluation basis over a
curve F is believed to be hard. The best method to compute evaluation basis is to use isogenies.

PushEndRing

We present here the PushEndRing, as given in [DLRW23, Algorithm 8]. If we know Og an evaluation
basis of End(E) together with an isogeny ¢ : E — F' and its kernel ideal I,, we can then construct an
evaluation basis of End(F'). The main idea is to see that for any 6 € End(F), ¢ o 0 o ¢ € End(E). This
makes the map

¢:End(F) - By o

1.,
10) — £3(Fob0y)

an injective morphism with L(EDd(F)) = 1/dEI¢ = Op.

Algorithm 2 PushEndRing
Input: Op = ({Oéi}?=1, 5) an evaluation basis of End(F), ¢ : E — F an isogeny of degree d with
an efficient representation together with its ideal I,,.
Output: OF a d-representation basis of End(F).
1: Find {B;}}_, the basis of the order Op = V/dl,I,.
2: Find {c; ;}; ;_, such that dg; = Z?=1 Ci O
3: Set e : Op — End(F) as ; — 1/aY};_[ci;]($ 0 6(cy) 0 p)
4: return Op = ({B;}1_,e71)

It is thus possible, knowing an isogeny between FEi708 and E to find an evaluation basis of E. This
method is useful and efficient, but what to do if we have to evaluate a point whose order is not coprime
to d and how can we find both an isogeny and its ideal?

To remedy the first point, we just have to find two isogenies of coprime degree. There are many methods
to obtain this result that we can engulf as DoublePath algorithms.

DoublePath

The goal of the a DoublePath algorithm is to use the knowledge of O the endomorphism ring structure
of F to construct two coprime isogenies ¢,v¢ : E — F together with their ideals. We give here a
presentation of the DoublePath as presented in [DLRW23, Algorithm 1].* To do so, it uses both
pushforwards and the factorization of isogenies, given by corollary 1.2.9.
Take # € End(E) an endomorphism of order A2B? with A and B both smooth and coprime number.
Then, we can write 6 as

=popor’or

with deg(p) = deg(p’) = B and deg(r) = deg(7’) = A. Then, we consider the following commutative

4But it is not the only one, as other variants exists, that uses for example the KLPT.
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diagram

Ey
’ p*TA' §
E F E’
~ 7/'\/*P
B p
Ey

and define ¢ = (p*;’) oT and ¥ = (TA’*p) o pA’, two isogenies between E and F of respective degree A% and
B2. Furthermore, by factoring # and by using KernelToldeal we can evaluate all these functions and
pushforwards.

2.2.2 Ideals representation

We now answer our second point and see that provided O an evaluation basis of End(E), then we can
easily find the representing ideal of ¢ : E — F', provided that its degree is smooth. This is done using
the KernelToldeal algorithm.

KernelToldeal

We present here KernelToldeal as given by [DLRW23, Algorithm 9]. The main idea is to construct an
endomorphism v € End(F) such that v factors through ¢, meaning that y(K) = 0, with {(K) = ker(¢).
To do so, we simply find a linear combination between the component of the evaluation basis {3;}1_,
such that it maps K to 0.

Algorithm 3 KernelToldeal
Input: Op an N-evaluation basis over E and K the kernel of an isogeny ¢ of smooth degree d

coprime to N
Output: Iy the ideal such that E[I,] = (P)

1: For each basis component f3;, compute @Q; < §(53;)(P)

2: Find 7 # j such that {(Q;,Q,) = E[d] = use discrete log
3: Take k # 4,7 and find a, b such that Q = a@Q; + bQ);. > also use discrete log
4: Define v = B, — af; — bp;

5. return Og~y + Ogd

Note that the smoothness is required to efficiently perform discrete logarithms. We thus retrieve the
representing ideal for smooth degree isogenies. This can be used in conjunction with the kernel repre-
sentation to evaluate the isogeny described by an ideal J without any smoothness requirement on n(J)
using the EvalTorsion algorithm.

EvalTorsion

We present here the EvalTorsion as given in [DLRW23, Algorithm 11]. Assume knowledge of O an
evaluation basis over F' and two isogenies p; : F' — FE and ps : ' — E’ of norm d; and ds with efficient
representations together with their respective ideals I; and I. Consider J an (Og, Op)-ideal of norm
N coprime to d; and ds. Finally, let P be any point in £. We are thus in the following diagram
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ANERVAN

E—>E’ OE—>(9E/

We then have that I;JI5 describe v = f3 0 ¢5 o p; an endomorphism of F. We thus get the following
equality
$7(P) = [(dids) " paoyopr(P) mod N

Algorithm 4 EvalTorsion

Input: Op an evaluation basis over F, p; : F' — E of degree dyi,ps : FF — E’ of degree ds, both
with efficient representations. J an (Og, Op/)-ideal of norm N coprime to d; and do. P€ E
Output: ¢;(P)

Compute an efficient representation of py > Doable with all representation in this thesis.
Find « such that Opy = [ JIy

Compute R = pa 06~ () 0 p1(P)

Compute p = (didz)™! mod N

return [p]R.

Using EvalTorsion, we can finally define the ideal representation of an isogeny.

Definition 2.2.3: Ideal representation

Let ¢ : E — E’ be an isogeny of degree d. Its ideal representation consists in:

o I, the (O, Op)-ideal corresponding to ¢, with Op an evaluation basis of End(F'), p; :
F — E and py : F — E’ two isogenies with efficient representations of respective degree dy,
ds and with corresponding ideals 17 and Is.

e The EvalTorsion algorithm.
We have that an ideal representation is an djds-efficient representation.

2.2.3 KLPT

To conclude this section, we will present several algorithms that are linked to the KLPT algorithm.
Most of the following is taken from Leroux’s thesis [Ler22]. To simplify, the KLPT is an algorithm that
transforms an (Og, Op)-ideal I into another (O, Or)-ideal J whose norm is smooth. The KLPT utilize
the following algorithms.

FullRepresentInteger

Given in [Ler22, Algorithm 4], the FullRepresentInteger take as input a number N > p and return
v € Oi1728 an endomorphism of FEj798 such that 74 = N. To do so, it uses a modification of the
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Cornacchia algorithm®, named the CornacchiaExtended [Ler22, Algorithm 1] that does not require
knowledge of the factorization of N but at the cost of some bias over the distributions of its answers.
The FullRepresentInteger has the following properties.

Lemma 2.2.4: [Ler22, Lemma 3.1.4] 4+ [FLLW22, section 6]

e FullRepresentInteger runs in poly(log(N)).

e Due to CornacchiaExtended, we can only output ©(1/iog(n)) of all possible endomorphisms
of norm N.

e Under plausible heuristic assumptions, the distribution of v as an output of FullRepre-
sentInteger is computationally indistinguishable from the uniform distribution among all
endomorphism of Ej798 of degree N.

FullRepresentInteger is extremely useful when combined with the DoublePath as they can be used
to compute evaluation basis over random curves F.

Proposition 2.2.5: [DLRW23, section 5.2]

Under plausible heuristic assumptions and provided A2 ~ B2 ~ p, then the following distributions
are computationally indistinguishable.

e F the codomain of ¢ and ¥ outputted by DoublePath(~, A, B) with v given by FullRep-
resentInteger(A4%B?).

e [ a random curve sampled uniformly among all supersingular curves.

RandomEquivalentIdeal

Given in [Ler22, Algorithm 6], the RandomEquivalentIdeal takes as input an (Og, Op)-ideal I and
returns J another (O, Op)-ideal such that n(J) is a “small” prime. It is done by applying the LLL

algorithm ([LLL82]) over the relative norm njy(a) = % to find a Minkowski reduced basis {3;}_, of

Op(I). Tt then samples at random {c;}}_; € [=b, ], check primality and return I Zn ?I/)B

The RandomEquivalentIdeal has the following properties.
Lemma 2.2.6: [Ler22, Lemma 3.2.3 & 3.2.4]

e As ¢; are sample randomly, the output of RandomEquivalentIdeal has an uniform distri-
bution among all small linking ideals.

e RandomEquivalentIdeal runs in poly (n(I)pC) with C' a bound depending on the basis
of OE

e Given J outputted by RandomEquivalentIdeal. Then, under probable heuristic assump-
tions and with probability greater that 1 —27¢,

Pt < () < Vplog(p)e

log p

5Defined in [Cor07], the Cornacchia algorithm solves efficiently equations of the form z2 + qy? = N with z,y € Z
provided that we know the factorisation of N.
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meaning that RandomEquivalentIdeal outputs inside this range with negligible proba-

bility provided € = 4/log(p).

KLPT

By combining RandomEquivalentIdeal together with FullRepresentInteger and with the addition
of a third algorithm named the FullStrongApproximation, get the KLPT. [Ler22, Algorithm 7]. The
KLPT outputs Oq798-left ideal J whose norm has the desired divisors. It can therefore be used to compute
ideals with smooth norms. This choice of smoothness comes at the cost of having a big norm. In general,
one gets that n(J) = O(p”?), but tradeoffs exists. For example, [PS18] shortened the length of the
isogeny to O(p”?) at the cost of a greater running time, while [FLLW22] lifted the necessity to have a
left Oq708-ideal, at the cost of a norm in O(pn/z).

2.3 High dimension representation

To put it simply, the idea behind the high dimensional representation lies in embedding isogenies be-
tween elliptic curves into higher dimension isogenies. The idea of higher dimensional representation was
proposed in [Rob22Db] and is an adaptation of [MMP 23, Rob22a] attacks on SIDH. HD representation
is based on something named the Kani’s Lemma.

2.3.1 Kani’s Lemma

Before explaining Kani’s Lemma, we need to give a bit of background on high dimensional abelian
varieties. Properly explaining the inner working of abelian varieties would easily require another dedicated
chapter, so we will just introduce the main differences between elliptic curves and abelian varieties that
will be useful to us. For the interested, we recommend the reading of [Mil86].

Let V be a n-dimensional abelian variety defined over F,. Note that definition 1.2.1 of isogeny holds.
The same goes for Theorem 1.2.8 that can be generalized using quotient varieties. Then,

e V[N] = Z3%" for N coprime to p. (which is in line with elliptic curves as they are 1 dimensional vari-
eties.) To remain consistent with isogenies over elliptic curves, we define the degree of a separable®
isogeny ¢ as ¥/| ker(¢)|. Thus, deg([m]) = m? for any dimension.

e Any isogeny ¢ : V. — W induces via the pullback ¢* a dual isogeny QAS WY - VY with VV =
PicO(V) the dual variety. The separation between V and V'V is important, as there are no
equivalents to Abel-Jacobi map, meaning that V and V'V are usually not isomorphic. One then
define an isogeny A : V' — V'V as a polarization and we write such system (V, ).

e If X is an isomorphism, then we say that (V, ) is a principally polarized variety. Given (V,\)
and (W, i) two principally oriented varieties, we say that ¢ : V' — W is a polarized isogeny if

¢¥ opo¢ = [deg(9)]A

6Separability over higher dimension isogeny ¢ : V — W is linked with the notion of separability of the field extension
K(V) over K(W). This definition agrees with our definition in dim 1 1.2.4 but is heavily rooted in algebraic geometry.
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We are then in the following diagram

¢

Vv—— W

A 12
VY <—¢ w
and therefore define the polarized dual of ¢, denoted (E as 1o @Y oA=L, This definition is then in

line with the definition 1.2.11 and holds similar properties as in proposition 1.2.12.

As we will from now on only work with principally polarized variety, we will omit the notation of polar-
ization.

Lemma 2.3.1: [Kan97] Kani’s Lemma

Let A, B, A’, B’ be principally polarized abelian varieties with f, g, f’ and ¢’ polarized separable
isogenies such that the following diagram is commutative:

f

A——DB

/
A/ > Bl

Then, the following map
F:BxA - AxB

)

g f

is a polarised separable isogeny with D = deg(F') = deg(f) + deg(g) = Dy + Dy and such that
ker(F) = { (f(P),~9(P))| Pe ADI} = {(9'(P), J'(P))| P B'[D]}

~

ker(F) = {(F(P).g'(P))| Pe BIDI} = {(—3(P)./'(P))| Pe A'[D]}

We recommend the proof in [Rob22a, section 3] that is both complete and easy to understand.
Although we presented here the Kani’s Lemma under its canonical form, we can also use is as follows.

Corollary 2.3.2:

1. If ker(f) n ker(g) = @, then consider h = go f. We can also write ker(F) as

{(tD:)(P), n(P))| P < BIDI| = { (h(P).[D21(P))| P e A'[D]}
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h/

Al— B

2. Given D = dyds, then we can write F' = Fy o F} with deg F} = dy and deg F5> = ds such that

|
v N
A" x B r Ax B’

ker(Fy) = ker(F)[di] = { (/(P),9(P))| P& Aldi]}

~

ker(F3) = ker(F)[da] = { (F(P),g'(P))| P € Bd:]}

2.3.2 Computing with Kani’s Lemma

Let us now explain how we can use Kani’s Lemma to represent isogenies.

HDKernelTolsogeny

It is apparent that to efficiently uses Kani’s isogeny, we need to use a kernel representation for high-
dimensional isogenies. We will use the representation given by the evaluation algorithm [Rob10, Algorithm
7.2.4]. This algorithm is based on [Rob10, Algorithm 7.3.2], an analog of KernelToIsogeny for high-
dimensional isogenies that we will therefore name HDKernelTolsogeny. We take this algorithm in
a black box manner, as it relies on #-functions. For the interested, see [Robl0, Part I] together with
[Mum66].

Similarly to kernel representation, the HDKernelToIlsogeny algorithm enables efficient representation
of HD isogenies of smooth degree d. More specifically, if ¢ is an isogeny of dimension n that is B-smooth,
then HDKernelTolsogeny would return an evaluation in O (log(d)B™log(B)). Likewise to [FJP11,
section 4.2.2], we can also use optimized strategies to not perform wasteful multiplication. See [DLRW23,
section F.1] for more details.

EvalKani

To evaluate isogenies using Kani’s Lemma, we will construct EvalKani. It uses Kani together with the
Zahrin’s trick to evaluate an isogeny ¢ : E1 — FE3 of degree d over a point R € E when given P, Q, p(P)
and ¢(Q) with (P,Q) = E;[N] and N smooth, coprime with d and such that N > v/d. Let Ny, Ny be
divisors of N. We will use isogenies in dimension 2, 4 or 8 depending on the value of a = Ny Ny — d, with
N7 and Ny divisors of N. There are three cases:

1. If a = a2, then we use Kani in dimension 2 over [a;] and ¢.

2. If a = a? + a3 (which occurs for a = 3 mod 4 prime) then we use Kani in dimension 4 over the
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following functions

ap —a2 2
= € End(E;) with d E 2%:=D , P
«@ ( a  a > nd(E;) wi eg(a 2 1a iag(p, @)

3. Otherwise a = a? + a3 + a% + a} and we are force to use Kani in dimension 8 over the following

functions
a; —a —az —a4
ag ai Gy —as 4
Q= € End(E;) with deg( a?;¥ := Dia,

o —ar a a (E) with deg(a Z; z 8,0, 0,9)
a4 asg —a2 a4

1) 2) 3)
E1—¢>E2 E%LE% EfLEé

[a1] [a1] o %) aq (65
Ey E, E? _z . E2 El _x Bl

In each case, we construct F', the Kani’s isogeny of degree Ny Ns. A good choice is of N7 and N; is thus
important as it may enable us to work in dimension 4 or in dimension 2, which significantly improve the
efficiency of EvalKani.

To evaluate F', we split F' into F' = Fyo F} with deg F; = N; using the second point of corollary 2.3.2. As
we already know a basis of E[N], together with its image by ¢, we also have basis of E[N;] and E[Ns]
together their images through ¢. We can thus construct a basis of E1[N]*denoted {P; ;}o<i j<2.x With j
the position and ¢ the choice of P or Q. Using corollary 2.3.2, we can compute By and B, the respective
basis of the kernel of F; and F2 Using HDKernelTolsogeny, we can therefore retrieve F; and FQ
We then have to compute F5. There are 2 methods, depending on the order of R, the point we want to
evaluate.

1. If R is not smooth, then we have to compute F». To do so, we simply compute ker(Fy) =
F5 (0% x E5[N>]*). As we know a basis of E3[N2] using ¢(E[N]), we can find B a basis of ker(F3)

by evaluating ?’2 at 2k points. We then make a third call to HDKernelTolsogeny to retrieve Fb.
It then suffices to write R in one of the components of F' to retrieve p(R).

2. If R is smooth, then we can do without computing F,. To do so, let r be the degree of R. We first
use CanonicalTorsionBasis to find a basis of F1[r] and Es[r]. We then construct By a basis of

(Ey x F3)*[r] and evaluate that basis through both F} and j28 (meaning 4k evaluations). Using
discrete logarithms, we compute the matrix M € May(Z,) such that

Fi(By) = MF}(Bo)
knowing that matrix enables us to compute any values of R as for any vector v € (Ey x E2)*[r]
F(v) = Fy0 Fy(v) = Fy 0 MFy(v) = ME, 0 Fy(v) = [dy]Mu
We then evaluate p(R) using F' with the same method as in the first point. More details on this

method are available in [DLRW23, section F.3].
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We only write the pseudocode for dimension 8. It is easy to modify the algorithm for dimension 4

and 2,

as the main difference is that instead of using the EHR algorithm”, we use Cornacchia. We

also here present the case where we compute 3 HD isogenies. Finally, we define a subroutine, called
ConstructKani that construct the Kani’s isogeny.

Note that EvalKani works perfectly if we set No = 1. In that case, we will compute F' is one go.
Nevertheless, it is always a good idea to split the Kani’s isogenies because computing F; and Fs can be
parallelized, which significantly speed up the computations.

Algorithm 5 ConstructKani

Input: ¢ : By — Es an isogeny of degree d with Ny, Ny divisors of N. (P,Q) = E;[N] with

S

=¢(P), T = ¢(Q).

Output: F' the Kani’s isogeny

10:
11:

kl <« ]\/v/]\/vl7 k?g <« N/NQ

ai,as,as,ay — EHR(N; Ny — d) > Use Cornacchia(1l, Ny No — d) if dimension 4
Construct o and &

Compute {P; j}o<i j<2.4 a basis of E{[N] > Using P, Q
B, «— {([l@‘l]E(Pm)7 [—kl] ( ,,]. )}O<i,j<2,4 > X(P; ;) computed using S,T

B, < {([haJalP).
R < HDKernelToIsogeny(B1)
Fy « HDKernelTolIsogeny(B>)

4
By «— {F3(0* x [kg]Z(PM))}(K o
Fy — HDKernelToIsogeny(Bg)
return F5 o F}

)}Oéi,j<274

Algorithm 6 EvalKani

Input: ¢ : By — Es an isogeny of degree d with Ny, Ny divisors of N. (P,Q) = E;[N] with

S =

SO(P)7T = QD(Q) and R € E1

Output: ¢(R)

1:
2:

F — ConstructKani(d, Ny, Ny, P, Q, S, T)
return (F(0,0,0,QR,0,0,0))

Using EvalKani, we can define the notion of high dimensional representation as follows.

Definition 2.3.3: High dimensional representation

Let ¢ : E — E' be an isogeny of degree d, its high dimensional representation consists in:

e (P,Q,0(P),¢(Q)) with (P,Q) = E[N], N smooth and coprime with d such that N > +/d.

e the EvalKani algorithm.

We see that, using HD representation, we can solve the supersingular isogeny problem with torsion point
information, provided that N is smooth. This is essentially how the attacks of [MMP ™23, Rob22a] works.
More generally, HD representation enables new cryptosystems such as [BMP23, DLRW23, Mor23, ...] or

"Initially proposed in [RS86] and improved by [PT18] that efficiently solve Legendre 4 squares problem.
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our new cryptographic protocols, SQIPrime and SILBE, the subject of the following chapters.
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Chapter 3

SQIPrime: SQISignHD with highly
two addic primes

We now present SQIPrime a post-quantum digital signature scheme based on the Deuring correspondence.
Comparatively to its inspirations SQISign [FKL*20] and SQISignHD [DLRW23], SQIPrime further-
expand the use of Kani’s Lemma initially introduced in SQISignHD for verification to both key generation
and commitment. Through these modifications, it gains the following properties:

e SQIPrime uses highly two addic base prime numbers.
e All isogenies used in SQIPrime have big prime degree.

This chapter is structured as such. Section 3.1 explains the main ideas and architecture behind both
SQISign and SQISignHD. Section 3.2 details the new tools that we used in SQIPrime. Finally, section
3.3 and 3.4 give the detailed construction and security analysis of SQIPrime.

3.1 SQISign & SQISignHD

One of the main interests of isogeny based signature schemes is that they provide compact post-quantum
signatures. This property, which comes at the cost of a greater computational cost, fuelled their research.
Among the early propositions ([YAJ"17, BKV19, ...]) was GPS [GPS16] that relied on the Deuring
correspondence. Its ideas were expended and improved in [FKL"20] to create the SQISign protocol.
As of today, SQISign is the only isogeny based candidate at the NIST post-quantum cryptography
standardization effort. In 2023, [DLRW23] proposed SQISignHD, a variant utilizing HD representation
for verification.

Both SQISign and SQISignHD are in fact identification schemes, and more precisely ¥ protocol based
identification schemes. They are then transformed into signatures schemes using the Fiat-Shamir trans-
form [F'S86]. An identification protocol is defined as such.

Definition 3.1.1: Identification schemes

Let A be a security parameter, an identification scheme is given by set of 3 PPT(\) algorithms
KeyGen, P,V together with a setup algorithm Setup(1*) — pp the public parameters.

e KeyGen(pp) — (sk, pk) a secret/public key pair.

e P,V are an interactive protocol such that for all (sk, pk):
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— Correctness:
P[Output(P(pp,sk) — V(pp, pk)) = 1] =1

— Soundness: For any P, an interactive PPT()\), then

IP>[Output(§(pp7 pk) «<— V(pp,pk)) = 1] < negl()\)

Note that the definition of an identification scheme allows for the prover to just send the secret key to
the verifier. If it is hard to retrieve sk from pk, then we would have a valid identification scheme. This
is why it is often asked for identification schemes to be zero-knowledge, which intuitively means that the
verifier V gains no information about sk when interacting with P. In this paradigm, the verifier can be
also honest or dishonest. See [Gol09, chapter 4] for a proper definition of zero-knowledge.

For signature schemes, we often define P and V using a ¥ protocol. This is because ¥ protocols are
easier to define while being honest verifier zero-knowledge interactive protocol, which is sufficient in
terms of security to construct using [FS86] existentially unforgeable under chosen message attacks (EU-
CCA) signature scheme in the Random Oracle Model (ROM). We define a ¥ protocol that is adapted to
identification schemes as such.

Definition 3.1.2: Y-protocols

A ¥ protocol is an interactive protocol composed of (P,V) that are decomposed in 4 sub-
algorithms Commit, Challenge, Response, Verify:

3. protocol
P(pp, sk) V(pp, pk)
sec, com «— Commit(pp, sk) _com .
chal chal < Challenge(pp, pk, com)

res «— Response(pp,sk,sec,chal) "

0/1 < Verify(pp, pk, com, chal, res)

This protocol must ensure

e Special Soundness. There exists £ a PPT()) algorithm called the extractor such that for
any pk, if (pk, com, chal, res) and (pk, com, chal’, res’) are two accepting views for V such that
chal # chal’, then £(pk,com, chal, res, chal’,res’) yields sk, a valid secret key.

o Special Honest-Verifier Zero-Knowledge (HVZK). There exists S a PPT(\) algorithm called
the simulator such that for any (sk,pk), the transcript (com,chal,res) of the interac-
tion P(pp,sk) « V(pp,pk) conditioned to chal is computationally indistinguishable from

S(pp, pk, chal).

As previously touched, SQISign and SQISignHD are 3 protocol based identification schemes build upon
the Deuring correspondence (hence the acronym SQIS for Short Quaternion Identification Scheme). The
main idea behind SQISign and SQISignHD is to prove the knowledge of the endomorphism ring End(E 4)
with F4 a supersingular curve. To do so, the idea is to use the fact that knowing End(F 4) enables the
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prover to find a connecting isogeny between E4 and any other curve Es, provided that he also knows
End(E>). The idea is then to let Fy be chosen as a challenge by the verifier in such a way that the prover
can retrieve End(F5) and respond the connecting isogeny that can be easily verified. The main difference
between SQISign and SQISignHD consist in how this connecting isogeny is computed and represented.
The respective architecture of SQISIgn and SQISignHD are given in figure 3.1.

Eipgg ————— B Eirs = 3B
| . v

Ti ¥ T/i ;T g
v b

E4 > Ey E4 7 Ey

Figure 3.1: Diagrams of SQISign (left) and SQISignHD (right). The prover is in blue and the verifier is
in red. Dashed isogenies are secrets.

SQISign: To construct o the connecting isogeny, SQISign uses a variant of the KLPT named the
SigningKLPT [FKL 20, Algo. 5]. The ideal I, is smooth, as its norm is a large power of 2 of size
O(p?). To be efficiently computed, o is represented as a composition of isogenies with rational kernel
generator. Transcribing I, to these kernels is done efficiently using IdealToIsogeny [FLLW22, Algo. 7]
by setting the prime p of SQISign to be such that 2/T|p? — 1 with 7% ~ p3 and T smooth. Finding such
primes is difficult and T often has prime factors in the order of 10%. Those big factors significantly slow
the signing procedure, as several T isogenies have to be computed throughout IdealToIsogeny. On the
other hand, the verification of SQISign is very efficient, as it essentially consists in computing a sequence
of isogenies of degree 2¢ from their kernels. SQISign is performed as such.

e KeyGen: Compute 7 : E1708 — F 4 together with its corresponding ideal I.. E 4 is the public key,
while 7 is the secret key. E4 is the domain of the response isogeny.

e Commit: The prover computes v : Ey728 — E1 together with its corresponding ideal I,. It gives ¢
to the verifier.

e Challenge: The verifier then computes a challenge isogeny ¢ : F1 — F5 and sends it to the prover.
FE5 is the codomain for the answer isogeny.

e Response: Using its knowledge of 1, the prover uses KernelToldeal to compute I,. Then, using
the SigningKLPT and IdealTolsogeny, the prover constructs an isogeny o : Fy — E; different
from p o1 o7 and gives o as a response to the verifier.

e Verify: The verifier then checks that the received isogeny is valid using KernelTolsogeny.

SQISignHD: On the other hand, SQISignHD uses the RandomEquivalentIdeal to compute o. The
response isogeny is therefore short O(,/p) but not smooth. It is then given to the verifier using the HD
representation. This shift to HD isogenies considerably speeds up the signature part of SQISignHD but
shifts most of the expensive computation to the verification that has to use EvalKani. To be efficient,
SQISignHD uses “SIDH”-like prime, that are easy to find. SQISignHD is thus performed as such.

e KeyGen: Compute 7,7’ : Ei798 — E4 together with its corresponding ideal I,. E, is the public
key, while 7 is the secret key.
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e Commit: The prover computes isogenies 1,1’ : F1708 — E; with DoublePath together with its
ideal I, and shares E;. This curve is the domain of the response.

e Challenge: The verifier computes a challenge isogeny ¢ : 4 — Fs and sends it to the prover. Ej
is the codomain for the answer isogeny.

e Response: Using RandomEquivalentldeal, the prover constructs an isogeny o : £y — E» different
from o7 o1, evaluate it using 7/, ¢’ and EvalTorsion and gives this evaluation of o as a response
to the verifier.

e Verify: The verifier then checks that the received isogeny is valid using EvalKani.

3.2 New tools

Before jumping into SQIPrime, we detail two new tools that we will use to construct our variant of
SQISignHD.

1. The first tool is called KaniDoublePath, a variant of DoublePath that uses Kani’s Lemma to
sample supersingular curves at random such that we can compute their endomorphism ring using
isogenies of big prime degree. This algorithm is a slight modification of the RandIsogImages
[NO23, Algorithm 2], as it additionally computes the corresponding ideal of these isogenies.

2. The second is a method to compute, given K a generator of the kernel of an isogeny, the correspond-
ing ideal even when its degree is not smooth. This method is an adaptation of the work of Leroux
over verifiable random functions in [Ler23] to use big prime order isogenies as isogeny challenge.

3.2.1 KaniDoublePath

The main idea behind KaniDoublePath is likewise to DoublePath to construct two isogenies of co-
prime degree between E7708 and another supersingular curve E. The main interest of KaniDoublePath
lies in the fact that those isogenies are not necessary smooth.

To do so, we first use the FullRepresentInteger to find v € End(E}725) an endomorphism such that
deg(vy) = ¢(N — ¢) with ¢ and N coprime such that N is smooth. Using corollary 1.2.8, we can write
v = porT with degT = /¢, degp = N — £. Using Kani’s Lemma and especially corollary 2.3.2 over the
following diagram, we compute the Kani’s isogeny F.

7';
E —————— FEyog

P 7 Tep

Eir98 —— F/
PxT

F:E%, > ExE
ker(F) = { (I1(P),¥(P))| P € Eyzas[N1

We can therefore evaluate both 7 and p at any points of Ey705. Additionally to [NO23, Algorithm 2], we
also retrieve I, and I, the ideal corresponding to 7 and p using the factorization of ~.

_ Z017287

I = O17287 + O1728¢ I, 7
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Algorithm 7 KaniDoublePath
Input: D725 an evaluation basis of End(Ey725) with (P,Q) a basis of Ey798[N] and ¢ s.t.
ged(¢,N) =1 and ¢(N — ¢) > p with N smooth
Output: 7,p: E1798 — E isogenies of respective degree £ and N —/ given as dimension 2 isogenies,
together with I, and I their ideals.
1: v < FullRepresentInteger(O;725, {(N — {))
B — {([(1P.A(P)), ([£]Q.7(Q)) }
F «— HDKernelTolIsogeny(B)
I < O1728% + O1728f
I — 012871~
return F, I, I; > 7(P) = F(P,0); and p(P) = —F(0, P);

When £ is prime, contrary to DoublePath, we are not considering long paths over one supersingular
graph gf; but are instead considering neighbors of E1795 over O(,/p) distinct supersingular isogeny graphs.
We base our analysis on the following assumption.

Assumption 3.2.1:

The following two distributions are computationally indistinguishable.
e FE a curve sampled randomly among all supersingular curves.

e E the random neighbour of 1728 in gf; with ¢ a random prime in [,/plog(p)~*, \/plog(p)].

Following lemma 2.2.6, we have that with extremely high probability, any curve E is the neighbor of
F1798 in some gﬁ, with ¢ in the above interval. It is therefore sound to assume that the distribution
is close from uniform. It nevertheless would require further studies, as we found non literature on that
specific problem. Using this mathematical assumption, we can then justify the output distribution of
KaniDoublePath as follows.

Corollary 3.2.2:

Under assumption 3.2.1 together with other heuristics and if N ~ p, then the following distribu-
tions are computationally indistinguishable.

e I/ a curve sampled randomly among all supersingular curves.
e E the codomain of 7 and p, outputted by KaniDoublePath(N, P, @, ¢) with ¢ a random
prime in [\/f)log(p)_l, \/Plog(p)].
Proof of Corollary 3.2.2:

Consider the following distributions:

1. E the codomain of T and p, outputted by KaniDoublePath(N, P, Q, ¢) with £ a random prime in

[vplog(p)~", \/plog(p)].

2. E the codomain of 7 and p, with p o 7 an endomorphism of Ej725 of degree ¢(N — £), with £ a
random prime in [,/plog(p)~*, \/plog(p)].

3. E the neighbour of 1728 in G/ with ¢ a random prime in [\/plog(p)~*, \/plog(p)].
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4. F a curve sampled randomly among all supersingular curves.

We can go from 1. to 2. using lemma 2.2.4 as we have that the FullRepresentInteger algorithm
outputs endomorphisms that are computationally indistinguishable from a uniform sample among all
endomorphism of norm (N — /).
To go from 2. to 3., we use the same heuristic argument as [NO23] i.e. that there are at least N—¢+1 ~ p
isogenies of degree N — £ over any curve E. It is therefore very likely that we can find an isogeny with
domain F and with codomain Fj725. If we do the heuristic assumption that isogenies of size O(p) have
a codomain close from random, then there is an isogeny of degree N — ¢ between Ej708 and E with
probability around 12(N — ¢)/p ~ 1.
Going from 3. to 4. is given by assumption 3.2.1.

1322

3.2.2 KernelToldeal for generic degree isogenies

Going back to the details of KernelToldeal, we see that it makes extensive usage of discrete logarithms
over E[d], with d being the degree of the isogeny. To be efficient, this method requires d to be smooth.
We therefore need another method for generic degree. The idea proposed by Leroux in [Ler23] is to use
the knowledge of the endomorphism ring of E to construct a special basis of E[d].

Definition 3.2.3: Special basis

Let E be any supersingular curve. (P, Q,, Ip) is special basis of E[d], with:
e P,Q € E such that (P,Q) = E[d].
e . € End(F) such that «(P) = Q.

o Ip the ideal such that E[Ip] = (P).

Given O an evaluation basis of End(E), we can construct a special basis using the following algorithm,
proposed in [Ler23].

Algorithm 8 FindSpecialBasis

Input: Op = ({b;}?_,,0) an evaluation basis of E with d an integer

Output: (P,Q,:,Ip) a special basis of E[d].

: Sample R €5 E[d]

Sample o € O such that ged (n(a),d?) = d

if 97 !(a)(R) = 0 do try with new R.

P 57 a)(R)

Ip — Oga+ Ogd

Sample ¢ g O such that ged(n(e),d) =1

if e4(P,671(¢)(P)) = 1 do sample new ¢. > Ensures they are not colinear
return P, 6 (¢)(P),6 (), Ip

Using special basis, we can compute ideals from a kernel generator K € E[d] using the following lemma.
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Lemma 3.2.4:

Let (P,Q,t,Ip) be a special basis of E[d] and let K = [a]P + [b]Q be a point in E[d]. Then
¢ : E — E/(k has for representing ideal

I = [a + b(S(L)]*Ip

Proof of Lemma 3.2.4:

(K) = [a]P + [b]@)
= ([a]P + [b].(P))
= [a + b {P)

e i = [0+ b(0)]udp

using the Deuring correspondence, we get the desired result.
[13.24

We can therefore compute ideals of any degree but the method that we presented here requires knowing
D . We now present a modification of lemma 3.2.4 that just requires knowing 1708 and ¢ : F17908 — F
an isogeny of degree coprime to d.

Corollary 3.2.5:

Let (P,Q,t,Ip) be a special basis of Fy728[d] and let ¢ : Fy708 — E be an isogeny with corre-
sponding ideal I, such that d and deg(¢) are coprime. Let S,T € E be the respective images of
P and @ by ¢ and let K = [a]S + [b]T be a point in E[d]. Then,

Ic = [(a+06(0)I4] 1P

Proof of Corollary 3.2.5:
Similarly to lemma 3.2.4, we have that

(K) = [gKK)
= ¢6{[a]S + [B]T)
([al(S) + [b]&(T))
([ad] P + [bd]Q)
([a]l P + [b]@)
([a]lP + [b]e(
= ¢ o[a+ b]{(P)

ie. ¢ =[po(a+b)]xdp and thus Ix = [(a + bd(¢))Is]Ip

¢
¢
¢
¢

]
1.(P))
(P

(1325

Note that [Ler23] propose to use ¢ to directly compute a special basis over E. Indeed, if (P, @, ¢, Ip) is a
special basis over Ey72s[d], then (¢(P), [deg(¢)]#(Q), 0, [Is(a+b5(6))]«Ip) is a special basis of E[d] with
0=¢orLo qAS The main interest of corollary 3.2.5 comes from the fact that it only uses endomorphism
over Fj798 and not over E. This therefore lightens the computational cost, and is more suited to our
usage in SQIPrime.
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3.3 Construction

Now

that we are familiar with the architecture behind SQISign and SQISignHD and have introduced

and explained the new tools that it utilize, we can construct SQIPrime. As previously stated in the
introduction, SQIPrime further-expend the use of the Kani’s Lemma to both KeyGen and Commit. More
precisely, SQIPrime is based on the architecture in Figure 3.2 and is performed as such

Eirog —-mmmmo s » By
! 4
| |
! i
| . |

T } o
I
| I
|
| |
¥ ‘
E4 E,

Y

Figure 3.2: Diagram of SQIPrime, prover in blue and verifier in red. Dashed isogenies are secrets

KeyGen: Compute 7 : Ej798 — FEa together with its corresponding ideal I, using KaniDou-
blePath. Additionally, compute a matrix M and use it to mask the image through 7 of a special
basis of degree ¢V, with ¢ ~ 2* prime. EF4 and the masked basis is the public key, while 7 and the
matrix M is the secret key.

Commit: The prover computes an isogeny 1 : E1798 — E7 with KaniDoublePath together with
its ideal I, and shares F;. This curve is the domain of the response.

Challenge: The verifier computes a challenge point C; € F4[q] and send it to the prover.

Response: Using the special basis over Ei72g and its knowledge of I, the prover retrieves I,, with
ker(p) = (C1). It then computes o : E; — E; different from ¢ o 7 o ¢ using RandomEquivalen-
tIdeal and construct kK = o o @, evaluate it using EvalTorsion and send this evaluation of k as a
response to the verifier.

Verify: The verifier receives x and checks using EvalKani that it is valid by seeing if x(C4) = 0.

The public parameters of SQIPrime are defined as such.

Algorithm 9 SQIPrime.Setup

Input: 1*
OUtPUt: pp = (pa (POa QO)? (Pa Q7 L7I[N]P)7B)

1: Take p a prime of the form p = 22*f — 1 such that p — 1 = 2Ngq with ¢ ~ 2* prime and N
coprime to q.

Py, Qo — CanonicalTorsionBasis(F72s, 22’\)

(P,Q,t,Ip) — FindSpecialBasis(D172s, ¢N)

Compute I[N]P = Ip + O1798q

B < [logy(p)/2 + logy(q) + log, log,y (p)]

pp < (pa (P()v QO)? (Pv Q, ¢, I[N]P)a 6)

return pp
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3.3.1 Key generation & commitment

Both key generation and commitment consist essentially in using KaniDoublePath. We take a random
prime ¢ € [/plog(p) ', \/plog(p)] and use the KaniDoublePath with an endomorphism of norm £(22* —
) to retrieve 7 in the case of SQIPrime.KeyGen and ¢ in SQIPrime.Commit. The only significant
differences between the secret key and the challenge generation is that during the key generation, we
additionally compute a masked basis of E4[Ng¢]. To do so, we compute the image of (P, Q) through the
isogeny 7 and use a random matrix M € GLy(Ng) to mask the torsion points. Note that this masking is
necessary as [N could be smooth, in which case, we could retrieve 74 using EvalKani.

Algorithm 10 SQIPrime.KeyGen

Input: pp = ( ) (P07 QO)’ (Pa Q, L7I[N]P)76)

Output: sk = (EA, Fa, IT,M), pk = (EA, (R, S)) with Fa a HD-isogeny representing 7 : Fq708 —
E 4 with corresponding ideal I.. M € GLy(Ngq) and R, S a basis of E4[Ngq].

Sample ¢4 a random prime in [/plog(p)~*, \/Plog(p)] such that £4 # g.

Fa, I, * — KaniDoublePath(22*, Py, Qq, /1)

Compute E4.

Sample M €3 GLa(Ngq)

(8) = M(E50)

return (Fa,I;,M), (E4,(R,S5))

Algorithm 11 SQIPrime.Commit

Input: pp = (p7 (POv Q0)7 (P7 Qa by I[N]P)? ﬁ)
Output: sec = (El, Fl,Iw), pub = (E;) with F; a HD-isogeny representing v : Fy708 — E; with
corresponding ideal Iy.

1: Take {1 a random prime in [\/plog(p)~*, \/plog(p)] such that ¢, # ¢

2: Fy, I, = < KaniDoublePath(2?*, Py, Qo, ¢1)

3: Compute F;

4: return (Fl,Iw), (El)

3.3.2 Challenge & response
Challenge

As touched earlier, our challenge is significantly different from the challenge of SQISign and SQISignHD,
as the evaluation of the challenge isogeny has been moved from the verifier to the prover. This adjustment
is necessary since the verifier lacks an efficient means to evaluate this isogeny, as it only has access to
kernel representation of ¢, whose degree is not smooth. In idea, the prover uses ideal representation to
construct an HD representation of ¢ that is then sent to the verifier together with the HD representation
of the answer isogeny o. Thus, instead of providing an isogeny of smooth degree, the challenger simply
sends a challenge point Cy € E4[q]. This point is given as a € Z, such that C1 = [N](R+[a]S). with R, S
given during SQIPrime.KeyGen. This point is the generator of the kernel of ¢ : E4 — E/(C;) = Es.
We have ¢ ~ 2* possible challenge isogenies.
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Response

In line with SQISignHD, our objective is to compute an isogeny o : Fs — FE; but the verifier lacks
knowledge of Fs. An idea would be to provide him with an HD representation of ¢ as the verifier could
check that the kernels match but the problem lies in the need for knowledge of a third map between
E1798 and Fy, which is something that would be complex to construct.

So instead of sending o and ¢ separately, we send k = o o ¢ and use the Kani’s Lemma over k to prove
that ¢ factors through x using the fact that ker(x) n E4[q] = ker(p). But first, we have to adapt corollary
3.2.5 to compute I¢, = I,. Having received the challenge Chal = a, the prover has to find b, ¢ € Z, such

that C; = [N] ([C]T(P) + [d]T(Q)) Those scalars are computable as (g) =M~!(}). Having computed b

and ¢, we can then compute I, as
Icl = [(b + C&(L))IT]*I[N]P

We then compute the (O, O1)-ideal I, I-1, and find another small (O3, O1)-ideal J using RandomE-
quivalentIdeal. Following lemma 2.2.4, we expect n(J) to be smaller than ,/plog(p). J correspond
to the isogeny o : Fs — FEj of prime degree d that closes our diagram in figure 3.2. Additionally, we
want, to ensure the efficiency of the verification, that 2° — gd = 1 mod 4 and is prime and thus use the
Kani’s Lemma in dimension 4. If d does not have this property, then we simply sample a new J using
RandomEquivalentIdeal. Heuristically, this event should occur with probability O(1/)).2

The response to our challenge is to give the isogeny x = o o ¢ to the verifier as an HD representation
together with d the degree of . We first call Canonical TorsionBasis over E4 to find a basis® of E4[22*]
and then simply use EvalTorsion. Note that the probability that d = ¢; or that d = ¢4 is negligible.
Additionally, we also use EvalTorsion to compute and send the image of a third point Cy = [a]R — S.
This additional point is used to ensure the soundness of our verification. It is important to note that Cs
is such that (Cy,[N]Cs) = Ealq].

Algorithm 12 SQIPrime.Response

Input: pp, sk, sec, chal = (p, (Po, Qo). (P, Q, ¢, I{n1p). B), (Fa, Ir, M), (F1,1,),a with a € Z, .

Output: res = (S,7T,U,d) with S,T € E1[2*], U € E1[Nq] and d the degree of .
b —1/1

() = M7(;)

IC1 <« [(b + CL)IT]*I[N]P

J < RandomEquivalentIdeal(I¢, I 1) d «—n(J)

check if 2% —dg =1 mod 4 and is prime. If not, go back to line 3.

X,Y « CanonicalTorsionBasis(E4, 22*)

02 <« [CL]R - S

Define 7 = (Fa(—,0))1 and ¢ = (F1(—,0));.

S,T,U < EvalTorsion (91728, I, Iy, I, J,qd, {X, Y, 02})

return res = (S,7,U, d)

3.3.3 Verification
Upon receiving S, T, U, d we want to verify that the following statement hold:

IWe could use the KLPT and then use the IdealToKernel algorithm but avoiding this algorithm was a reason behind
the development of SQISignHD.

2This is the method used in [DLRW23]. They furthermore constructed in [DL.RW23, E.2] a method to efficiently perform
this random sampling.

3As they are given by CanonicalTorsionBasis, they are not sent to the verifier. We could also take any basis of
E4[22*] but we would need to specify in res.
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e The torsion points we received define an HD representation of an isogeny k : E4 — FEj of degree
dq such that the isogeny ¢ factors through x, meaning that ker(x)[q] = (C1).

To do this verification efficiently, we modify EvalKani so that we never have to compute the full isogeny
F. We have the following diagram:

By —>= . p?

Y Y

By — = B?
a —a 2

yi= ( 1 2 ) with deg(y) = Zaf; ¥ := diag(k, x)
=1

a2 ai

Using Kani’s Lemma and corollary 2.3.2, we split the isogeny

_(*
F= (7 3 >
in two isogenies Fy and Fy with F' = Fs o F} and deg F; = d; with

ker Fy = {(E(P), ffy(P))‘ Pe Efl[dl]} ker Fy = {( —A(P), E(P))‘ Pe Eji[dQ]}

We then use the following property:
Let X € E4 be a point of order coprime to dyds, Then we have the following equivalence.

0 [al]X 0 [al]X

0 —as| X 0 ~ | [—a2]X
F X = [ Y%] — [dg]Fl X = FQ [ YQ—]

0 0 0 0

We use this equivalence on the two points C7 and Cs of respective order ¢ and Ng.
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Algorithm 13 SQIPrime. Verify

Input: pp, pk,com,chal, res = ( , (Po, Qo), (P,Q,L,I[N]p),ﬁ), (Ea,R,S),Ey,a,(S,T,U,d)
Output: be {0,1}

: if one of the pomts S,T,U is not in F; do return 0

dl <« 2l ,dg <« 2 ], k‘l <« 22)‘/d1, ]4;2 <« 22)\/612

(a1, az) < Cornacchia(2° — ¢d)

Compute v and 4

Compute {P; j}o<i j<22 a basis of B3 [22}] = Using CanonicalTorsionBasis
B «— {([kzl]Z(Pi,j),[ kl] ( ~,j )}0<”<2 ) > X(P; ;) computed using S, T

B2 h {( _kQ]N( i ) )}O<'L,j<2 2
Fy HDKernelToIsogeny( 1)
F, — HDKernelTolsogeny (B 32)
if codomain(F}) # codomain(F,) do return 0 > Do like [DLRW23, section F.3]
+ C1 [N](R +[a]$), Co < ([a] R = 5)

2 by [d2]F1(0,0,C1,0) = Fy([a]Ch, [~a2]C1,0,0)

: b2 «— [dg]Fl(O 0 CQ, ) ([ ]CQ,[ GQ]CQ,U,O) and [N]U # 0.

: return b; A by

— =
= O

Ju—
[\]

a1

—
w

ai

—
W~

Proposition 3.3.1: Correctness of SQIPrime

Let pp, pk, chal be a valid public key, commitment, and challenge of SQIPrime and let P, Q be the
canonical basis of £4[22*]. Let Res be any possible response. Then

SQIPrime.Verify(pp, pk, pub, chal,Res) = 1 <= Res = (5,7, U, d) is such that:
e (P,Q,S,T) is an HD representation of an isogeny & : E4 — E; of degree qd.

e ker(k) n E[q] = (Cy).

Proof of Proposition 3.3.1:

Our proof takes inspiration from [DLRW23, section E.5]. Assume that SQIPrime. Verify(pp, pk, pub, chal, Res)

1. Then, this means that S,T,U are in Ey, that [N]U # 0, that } and F are well-defined, have the
same codomain and that the following equalities hold.

[dQ]E(Ou 07 Cl7 0) = F:Z(alcl7 _a2027 07 0) and [dQ]E((L 07 027 0) = %2(041017 _a2027U7 O)

Therefore F(0,0,C1,0) = (a;01, —asCs,0,0) and F(0,0,C5,0) = (a;C1, —asCs, U, 0)

From isogeny F,using ¢; and p; the standard injections/restrictions of product spaces, we can construct
16 elliptic curve isogenies F'; j = p; o F'ov; with 1 <4,j < 4 such that forall j =1,---,4:

4
Z deg(F; ;) = deg(F) = 28
i=1

We interest ourselves at j = 3. We want to show that for ¢ = 1,2 and 4, F; 3 = [b;] with b; = a1, —as
and 0. To do so, we use corollary 1.3.9. Indeed, using the triangular inequality.

for i = 1,2,4; deg(Fiz — [b;]) < 427 ~ 22 +2loe(M)+2
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But we know that F; 3 = [b;] for all points generated by (Cy,Cs) , i.e, for N¢? ~ 23* points. Thus,
Fl)g = [a1], F273 = [—az] and F4,3 = 0, meaning using the previous equality that Fg)g is an isogeny
of degree qd between E4 and E;. Furthermore, we have that F33(C1) = 0 and that F33([N]C2) # 0,
meaning that ker F'3 3 n E4[q] = (C1), proving our point.

[13.3.1
Table 3.1 gives us a comparative between SQISign, SQISignHD and SQIPrime.
‘ SQISign ‘ SQISignHD ‘ SQIPrime ‘
prime 2/T|(p?* —1) and T = DT’ p=223VF—1 p=2"f—1landp—1=2Ngq
Key gen [* isogenies 2% isogenies (2,2)-isogenies
Commitment T’ isogenies 2> isogenies (2,2)-isogenies
Challenge D isogenies 3V isogenies C e E4lq]
Response kernel representation HD representation HD representation
Verification [* isogenies (2, 2)-isogenies (2, 2)-isogenies

Table 3.1: Comparative of the SQISign Family

3.4 Security analysis

To construct the SQIPrime digital signature scheme by applying the Fiat-Shamir transform [FS86], we
still have to prove that SQIPrime is an identification scheme, i.e. that SQIPrime is a ¥ protocol. We
also discuss how to find good prime numbers for SQIPrime.

3.4.1 SQIPrime is a ¥ protocol

To prove that SQIPrime is a X protocol, we have to prove special soundness and HVZK. The extractor
is constructed as follows.

Proposition 3.4.1: SQIPrime Extractor £

Let (Ey,a1,S51,T1,Up,dy) and (Eq, a2, S2,Ts,Us,ds) be 2 transcripts with identical commitment
F4 and different challenges points a; and as. There exists an extractor £ that, given both tran-
script, can efficiently solve the endomorphism problem over F 4.

Proof of Proposition 3.4.1:
Our proof is very similar to [DLRW23, section 5.1]. The only meaningful difference comes from the fact
that the probability that any two of ¢, d; and dy are not coprime is negligible.
We can use Sp,7; to compute an HD representation of k1 = o1 o 1 and S, T5 to compute an HD
representation of k3 = g3 0 . Then, @ = k3 o k1 € End(E4) is non-scalar, as otherwise, we have that
a = [x] such that x? = ¢?didy and thus xy = gx’. Therefore [da2]k1 = [X']k2 and as da, d; and \' are
coprime, this induces that ¢, = @9 i.e., that a; = as, which is a contradiction.

[134.1

The extractor ensures us that SQIPrime has special soundness. Similarly to [DLRW23, section 5.2], we
construct the simulator under the assumption that we have access to the following oracle.
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Definition 3.4.2: RUCGIO

The Random Uniformly Constrained Good Isogeny Oracle (RUCGIO) is an oracle that
take as input E any supersingular curve together with P € FE[q] and that return an efficient
representation of  : E — E’ of degree ¢f with ¢ prime such that:

e F' is uniformly distributed over all supersingular curves.

e x is uniformly distributed among all isogenies between E and E’ such that P € ker(x) and
such that 28 — ¢¢ is a prime equal to 1 mod 4.

Proposition 3.4.3: SQIPrime simulator S

Given pp, pk and chal, there exists a PPT(\) simulator S with access to a RUCGIO that simulates
transcripts with a distribution that is computationally indistinguishable from the distribution of
transcripts of SQIPrime, conditioned to chal.

Proof of Proposition 3.4.3:

Given a € Z,, we compute Cq = [N](R+[a]5). Calling RUCGIO over E4 and Cy, we retrieve an efficient
representation of k : E4 — E; and use this representation to compute the points X = k(A),Y = k(B),
and Z = k([b]R — [a]S) with A, B the canonical basis over E[2%}].

We then simply return the following transcript

(Ela a, X7 Y7 Za deg(n)/q)
This transcript is computationally indistinguishable from a genuine transcript, as:

e Following corollary 3.2.2, we have that a genuine F; or one given by RUDGIO are computationally
indistinguishable.

e Following lemma 2.2.6, a genuine x or one given by RUDGIO are computationally indistinguishable,
and so does X,Y, Z, degT(”).

[]3.4.3
We now make the following assumption.

Assumption 3.4.4:

The endomorphism problem remains hard even when given access to RUCGIO.

By definition, RUCGIO, when given an input C, generates a random isogeny that factors ¢c and that
are of good degree. If C' is of smooth order, then RUCGIO is in fact equivalent to the RUGDIO oracle
[DLRW23, Definition 5.2.1]. Thus, the arguments of [DLRW23, section 5.3] also applies to RUCGIO. it
is therefore reasonable to assume that RUCGIO does not help to break the endomorphism problem.
Thus, using the Fiat-Shamir transform [FS86], we construct a digital signature scheme that is EU-CCA
in the ROM.

3.4.2 Finding “SQIPrime-friendly” primes

As touched on in SQIPrime.Setup, public parameters and especially the base prime numbers p are
different from primes in [FKL"20] and [DLRW23]. They can in fact be seen as a mix between the 2, as
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they are similar to the “SIDH” primes of SQISignHD but also require conditions on both p+ 1 and p—1
like SQISign. Nevertheless, in SQIPrime, the condition is just that p — 1 has a factor of size O(/p). It
is thus easier to find “SQIPrime-friendly” primes than to find ‘SQISign-friendly” primes. They can in
fact be found by brute-force over f. Indeed, if we take p = 22*f — 1 prime, then the probability that a
random prime ¢ divides (p — 1) is //g. As there are about 2*(2! — 1)/\ distinct primes in [2*,2**], we
have that the probability that there is a prime ¢ in [2*,2***] that divides p is heuristically

A+t 2)\+1 ¢ oA+i

P [E!q € [QA7 2’\+t] such that q)(p — 1)] ~ Z IP[ Z 2 Z )\1“
q=2* q>2A q i=1g=2x+i-1 2
N i A+ Lot
“~ ()\—&—2)2)‘“ AN+ T A+t

We give here a few examples of good candidates we found using this brute force method for A = 128:

P + 1= 22-128 . 11 . 13 ~ 2263.15
p—1=2-32.127-2797 - 112170853 - 772493863 - 2770313983597 - ¢
q = 1476396724822894822827907699057841897873 ~ 2130-11

p+1=12%120.39405 ~ 27559
p—1=2-3-149 -2745335386200139 - 122125102148171050639 - ¢
q = 369237590624773543866334185733060208813 ~ 2128-11

p+1=2%120.167.397 ~ 220001
p—1=2-3-7-11-41-5683514583831199 - 500402127095125861 - ¢
q = 2174422729538275144428922863792468335219 ~ 2130-67

The first prime is in line with our definition, while the latter two are constructed to be very close to 22°6.
In each case, we have enough 2 torsion points to compute all HD isogenies.

Efficiency of SQIPrime

The next step with SQIPrime is to write an efficient implementation. This is something that we were
unable to do in the scope of this thesis, as that would have required a proper implementation of HD
isogenies. Nevertheless, we can make a reasonable assumption on the efficiency of SQIPrime based
on the implementations in SAGE of [DLRW23, section 6.2] and [NO23, section 5.3]. We expect to have
similar speed for SQIPrime.KeyGen and SQIPrime.Commit as QFESTA’s KeyGen. We also expect
SQIPrime. Verify to be two times slower than its counterpart in SQISignHD due to the fact that we
will use Kani’s Lemma over isogenies that are two time longer. This is therefore encouraging, especially
with the later speed-up in computing (2,2) isogenies in [DMPR23].
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Chapter 4

SILBE: an UPKE on lollipop attacks

In this chapter, we present a new Public Key Encryption scheme (PKE) named Supersingular Isogeny
Lollipop Based Encryption or SILBE (“syllable” in german). As its name entails, SILBE’s inner workings
are rooted in lollipop attacks, particularly leveraging the generalized lollipop attack [CV23] on M-SIDH
[FMP23]. Thanks to its architecture, we can easily make of SILBE an Updatable Public Key Encryption
scheme (UPKE). This makes of SILBE the first! isogeny-based UPKE not based on group actions as are
[LR22] and [EJKM20, section 6].

This chapter will be structured as such: Section 4.1 explains the definitions of UPKE, M-SIDH and of
lollipop attacks. Section 4.2 details how we construct the PKE SILBE. Finally, section 4.3 explains how
we can make of SILBE an UPKE together with a discussion on parameter selection.

4.1 Generalities

4.1.1 UPKE

First and foremost, we need to properly define the notion of Updatable Public Key Encryption (UPKE).
This notion was initially introduced in [BLMR15] as a relaxation of Forward Secure Public Key Encryption
(FSPKE), given the inherent complexity of constructing FSPKE systems and the shared advantageous
properties between the two. In addition to functioning as a PKE, UPKE allows for secure asynchronous
key updates. several UPKE schemes have been proposed based on discrete logarithm, LWE or DCR.
[DKW22, AHLP22]. The definition of UPKE provided below is taken from [EJKM20].

Definition 4.1.1: Updatable Public Key Encryption

Given A a security parameter, an UPKE scheme is given by a set of 6 PPT()) together with a
setup algorithm Setup(1?) — pp the public parameters.

$
* KG(pp) —> (sk. pk) * UG(pp) = 1
e Enc(pk, m) St e Upk(pk, ) — pk’
e Dec(sk,ct)—m o Usk(sk, u) — sk’

Likewise to PKE, they also must ensure correctness

ITo our knowledge, the only other proposed architecture was [EJKM20, section 5], that was based on the extended-SIDH
and was named by its authors an “online UPKE” as it was not fully asynchronous.
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(sko, pko) & KG(1%),
pi < UG(1Y), =1
$
<5ki7pki> — (USk(SkiflaMi)yUpk(pkiflyﬂi»

P Dec(ski7 Enc(pki, m)) =m

We make a slight abuse of notation, as all algorithms know of pp, but this choice is made to clarify
already heavy notations. The idea behind the security of an UPKE is to be a secure PKE with a key
update mechanism that ensures both Forward Security and Post-Compromise Security. The first notion
means that if the adversary learns about sk;, then it can not use this information to retrieve sk; for j <1
without knowing the update values p;. Similarly, the second notion induces that the adversary is not
able to retrieve sk; for j > 4 without knowing the update values p;.

To ensure that those security notions are respected and to enable the adversary to adaptively choose
updates, we use the following oracles and lists.

e Upd._list and Cor_list are two lists that respectively store the updates made by the adversary and
what keys are corrupted.

e Fresh_Upd: The Fresh-Update oracle samples a random update p;, computes the updated keys
(skit1, pki+1) and return pki; 1.

e Given_Upd: The Given-Update oracle computes the keys (skii1, pkit1) corresponding to a given
update p; and return pkj;i. The update (i,7 + 1) is added to Upd_list.

e Corrupt: The Corruption oracle that receive an index j and return sk;. It marks j as corrupted
together with all others keys of index 7 such that there is no fresh update in-between.

Skl pki) (sks, pks) (sks, pks)
(sko, pko) (ska, pka) Sk47 pka) (ske, pke)

Figure 4.1: Representation of the updated keys

The first two security notions we will consider are the INDistinguishability under quantum Chosen Plain-
text Attack with Updatability (IND-qCPA-U) and INDistinguishability under quantum Chosen Ciphertext
Attack with Updatability (IND-qCCA-U). In IND-qCCA-U, adversaries have access to an additional de-
cryption oracle Opec, that decrypt the ciphertext ct given by the adversary.

We have given just below a modular description of two games with the IND-qCCA-U additions in red.
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Game 4.1.2: IND-qCPA/qCCA-U

glI)ND-qCPA/qCCA—U(AhAQ)

Fresh_Upd() — pk;

1: 1=0 1:
2: Upd.list = Cor_list = & g9
3: sko, pko <— KG(1%) 3:

. . Fresh_Upd,Given_Upd,Corrupt,O ...
4: m07m17J75t(‘A1 Du(pko)

5: if mg = m; return L

i=i+1and p<— UG(1Y)

(skis1, pkiy1) < (Usk(ski, 1), Upk(pki, 1))
return pk;;1

Given_Upd(u) — pk;

6: ct, <« Enc(pkj, mp)

7o d Agiven,Upd,Fresh,Upd,Corrupt,ODM (Ctb, St)

2.
3.

8: if IsFresh(j) do:
9: return b =d

4.

10: return L

1:

t=1+1
(ski+1, pis1) < (Usk(ski, 1), Upk(pki, 1))
Upd_list «— Upd_list U {(i,i + 1)}

return pk;;1

Corrupt(j) — sk;

ODec(ki, C) —m

1: if k=jand c = cty,return L

2: return Dec(sk, ¢)

IsFresh(j)

?
1: return not jeC

Definition 4.1.3: IND-qCPA/qCCA-U Secure

1:

B > B BN GV V]

Cor_list = Cor_list U {5}
i, k<7
while (i — 1,4) € Upd_list do :
Cor_list = Cor_listu {i —1} and i =43 — 1
while (k,k + 1) € Upd_list do :
Cor_list = Cor_listu {k+ 1} and k =k + 1

return sk;

An UPKE is IND-qCPA /qCCA-U secure if for any given (A;,.43) quantum poly(\) adversaries

such that

AdvIND—CPA/qCCA—U(AhAz) _ ’IP’ [gllND»CPA/qCCA-U(AhAz) _ 1] _Pp |:g(I)ND—CPA/qCCA—U(A17A2) _ 1} ‘ < negl())

We also work with a third security notion, One- Wayness under quantum Plaintext Checking Attack with
Updatability (OW-qPCA-U). Here, instead of distinguishing between the ciphers of two chosen messages,
the adversaries have to decrypt a challenge ciphertext. Additionally, adversaries in this game have access
to Opca a plaintext checking oracle that receives a plaintext and a ciphertext and returns if the ciphertext

is a valid encryption of the plaintext.
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Game 4.1.4: OW-gPCA-U

gOW_qPCA_U(Alv AQ) OPCO(m7 c, Pku) e b
1: =0, Upd_list = Cor_list = 1: ifm¢ Mdo

return L

V)

2: sko,pko «— KG(1Y)

. i 3: else do
3t st Airesh,upd,leen,Upd,Corrupt,OPCO (Pko)

.

4: t = Dec(ski,
b om< M return m ec(ski, c)
5: ct<$;Enc(pkj,m)

6: N« Agiven,Upd,Fresh,Upd,Corrupt,OPco(

7: if IsFresh(j) do:

ct, st)

?
8: return m =n

9: return L

Definition 4.1.5: OW-qPCA-U Secure

An UPKE is OW-qPCA-U secure if for any given (A;, A2) quantum poly(\) adversaries such
that

AdVIND_qPCA_U(Al,A2> =P [gOW—qPCA—U(A17A2) — 1] < neg|()\)

4.1.2 M-SIDH

Going back to isogenies and more precisely to SIDH, we have seen in section 2.3 how EvalKani could
be used to solve the supersingular isogeny problem with torsion point information. We now present some
countermeasures. To make the SIDH resistant to Kani’s Lemma, the idea of [Fou22, FMP23] is to mask
the torsion points, hence its name of Masked-SIDH (M-SIDH). The central idea comes from the following
equality. let ¢ be an isogeny of degree coprime to m. Then

{[ale(P) + [le(Q) ) = {[a) ([mle(P)) + [)([m]¢(@) )

meaning that inside the SIDH, if instead of sending w4 (P), pa(Q), we send [m]pa(P),[m]pa(Q) with
a secret number m coprime to the degree of ¢4, then we could still compute the required pushforwards.
Sadly, this is not so simple, as using Weil pairing, we have that e4 (¢(P),¢(Q)) =ea(P,Q)%e?. If A
is smooth, using discrete logarithm, we can recover deg¢ mod A. Applied to [m], this entails that
we can recover m? deg(¢) mod A and thus m? mod A. Finding the mask m is therefore equivalent to
finding the right square root of m? in Z,4. Thus, to be secure, we need to have a A such that Z4 has
many roots of the unity, which means that A = [, p; with n large and p; distinct odd primes. This
is the general idea behind the M-SIDH that we now describe as presented in [FMP23]. Let the M-SIDH
public parameter be as follows:

e p = ABf — 1 a prime number such that with A = ]_[?:Al p; and B = H;lfl gj coprime such that
A~DBandnyg ~ng.

e I a supersingular curve defined over F..

e (P4,Qa) a basis of E[A].
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e (Pp,Qp) a basis of E[B].

with both Alice and Bob that can efficiently sample at random over p3(A) = {z € Za|2? = 1} and p2(B).

M-SIDH
Alice(pp) Bob(pp)
SA g Za,o —g u2(B) sp < Lp, B s p2(A)
Ra «— Pa+[s4a]Qa Rp «— Pp + [sB]|QB
¢a, Es — KernelTolsogeny(E, Ra, A) ¢B, Fp — KernelTolsogeny(E, Rp, B)
Sa — [a]pa(Pp), Ta < [a]pa(@s) Sp < [Blos(Pa), T < [BléB(Qa)
Ea,S4,Ta
Ep,Sp,Ts
Ua < Sp + [sa]TB Up « Sa +[s8]Ta
Y4, Ex < KernelTolsogeny(Ep,Ua, A) VB, Ex < KernelToIsogeny(EA, Ug, B)
K « KDF(j(Ex)) K « KDF(j(Ex))

It was proven in [FMP23] that the key security of M-SIDH reduces to the following problem with adequate
N and d.

Problem 4.1.6: Supersingular isogeny problem with masked torsion point information

Let ¢ : E — E' be an isogeny of degree d, let (P, Q) be a basis of E[N] with N =[]\, p; coprime
to d and let m € s (V) be a random element.

Given P, Q,[m]o(P), [m]e(Q), compute ¢.

The rationale behind why masking provides protection against EvalKani comes from the fact that the
torsion points we receive describe the isogeny [m]¢ whose degree is greater than N. Intuitively, we would
think that it suffice for n4 and np to be around X each to ensure that we have |us(A)| = 2%, but this
is not sufficient. This is because instead of needing to find m mod N it suffice to find m mod N,
with N, = H:L:t p; such that N; > v/d. This is because we have enough torsion points on N; to use
EvalKani efficiently and thus retrieve ¢. Then, as m € pus(N), we have that m mod Ny € pa(N;) with
|2(Ny)| = 277!, meaning that we have significantly diminished the numbers of possible masks. Taking
N; with only the biggest factors of N is the optimal solution to increase N; while minimizing |uo(Ny)|.
Using this method, we get the following theorem.

Theorem 4.1.7: [FMP23, Theorem 7] Attack by using less torsion point

Let ¢ : E — E’ be an isogeny of degree d, (P,Q) = E[N] with N = [, p; and define
N; =[], p; with ¢ minimal such that N; > V/d. Then, there exists an algorithm that solve
the supersingular isogeny problem with masked torsion point information in O(2"~t*+1).

Theorem 4.1.7 induces that to ensure the security of M-SIDH, we need for A and B to be such that for
all Ay = []4 p;, we have that A, > VB = nj —t > X and similarly for B. As shown in [FMP23, section
7.3], the number of needed distinct prime divisors of p is around 4.5\. M-SIDH is therefore significantly
slower than SIDH as further supported in [LLCT23, section 5]. It was also shown in [FMP23, section
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4.2] that M-SIDH was also insecure if the starting curve has a non-small endomorphism or a known
endomorphism ring. Finally, it was shown in [CV23] that M-SIDH was insecure if the starting curve was
defined over F,, as we can perform a lollipop attack.

4.1.3 Generalised lollipop

We briefly mentioned lollipop attacks when we talked about SIDH in section 2.1.2. They were originally
introduced in [Pet17], improved in [dQKL"20] and used in [FP21] as attacks over the SIDH and super-
singular isogeny problem with torsion point information. The original lollipop attack used the knowledge
of the endomorphism ring over the starting curve of a secret isogeny . In the case of SIDH, this curve
often was E1728.

To retrieve @, we choose a non-trivial endomorphism 6 € End(E;728) and find M the matrix that represent
the action of 6 over the basis (P, Q) of Fi798[N|. We choose 6 specifically such that the lollipop ¥ €
End(F) defined as ¥ = @ o060 @ + [m] is of degree N. Seeing E[N] over the basis {p(P),¢(Q)), we
have that the action of ¥ is given by the matrix [d]M + [m]Ids, meaning that we know ker(X). We
then evaluate ¥ over any points with KernelTolsogeny. By subtracting [m], we can therefore evaluate
pofopover E[d] and thus retrieve information on ker(p).

™

Eq708 £y

©
€

¥ "
0 " Bigps e E e

®

E Es

Figure 4.2: Examples of lollipop attacks. The left one is the original attack in [Pet17] while the second
is taken from [FP21]. Red isogenies are secrets, while blue isogenies are chosen by the attacker.

We now present the generalized lollipop attack, an attack that works over M-SIDH. It is detailed in [CV23].
Its general idea is to use the fact that the domain of the mask isogeny ¢ is defined over F,, to construct a
new unmasked isogeny v, and use EvalKani over v to retrieve ker(1)) and extract ker(y) from ker(¢)).

To be more specific, let ¢ : Ey — E be an isogeny of degree d, with Ey defined over F,,. We set (P, Q) to be

. . . . S P . m 0
a basis of Eg[N] and S, T to be the masked image of those points, i.e. (7) = Ay (Q) with A = (0 m)'

We then consider the following diagram, where we denote as ¢(®) the map 74 ¢. Because Ey is defined
over [F,,, we have that 7 € End(E,) and its pushforward is well-defined.

E
/ i
W‘::i EO iﬂ— w
(p) L
%)
E®)

We set 1) = o) o 3. We will then use the following lemma.
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Lemma 4.1.8: [CV23, Lemma 3]

Using the above notation, assume that the matrix M3 is such that

o) (o)
o(3) = arMen() moa i

meaning that we can compute ¢(F[N]).

Then, we have that

Proof of Lemma 4.1.8:
As o) o 1 = 7 0, we have that [p]p®) = 70 po7. Thus using M; = 7| go[n], We have that

mw(;) _ [plo® 045(*;) — [d]A ([p]¢<p> <g>>
N R )
= [d]JAM: A" '7 ( ) ( )

o o(8) - @ motvnter(5) - ezt (5)
1418

As we can evaluate 1) over E[N] and we have that deg(¢)) = d*> < N?, we can use EvalKani over 9 to
evaluate v over any points and in particular over E[d]. By definition, we have that ker(p) < ker(y)[d] =
ker(1) n E[d], but we do not necessarily have an equality, meaning that we have not yet found ker(9).
Nevertheless, we have gained a substantial among of information. Indeed, consider d' the biggest divisor
of d such that ker(¢)[d'] = E[d']. We have that [d'](ker(¢)[d]) is a cyclic group of size ¢/d', meaning
that using KernelTolsogeny over a generator of [d'](ker(4)[d]) will give us ¢ : E — E; a component
of degree 4/d’ of ¢

E = E = Eo

We have retrieved 1, it therefore remains to retrieve g, of degree d’. The fact that ker(¢)[d'] = E[d']
induces that

ker(p)[d'] = ker(p)[d'] = m(ker(¢)[])

i.e. ker(p)[d'] is an eigenspace of T over E[d’]. This information is especially useful as this tremendously
reduces the possibilities for ¢,. We will only detail here the case d’ = ¢ with ¢ a prime number. The
generalized case is detailed in [CV23, section 3.2]. We have three distinct scenarios that depend on how
g behave in Z[7] = Z[+/—p]. See [Sam13] for more details in the reason behind this partition.

1. q is inert in Z[/—p], meaning that (%) = —1. In that case, we have that p remains prime and
thus that 7 is not diagonalizable over E[d’], meaning that d’ = 1 and that ker(¢)[d] = ker(¢).
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2. q is decomposed in Z[+/—p]|, meaning that (?) = 1. We have that 7 has two distinct eigenvalues

over E[d'], i.e. two distinct eigenspaces. We therefore have restricted the possibilities to two
eigenvectors and can construct the corresponding isogenies 3 and ¢2. The valid 5 is the one with
the same codomain as ;.

3. ¢ is ramified in Z[/—p], meaning that (%p) = 0. In this case, m has one eigenvalue with an

eigenspace of dimension two, and we gain no information about isogeny ¢2. This scenario thankfully
does not occur when ¢ is separable.

Using this method, we get the following result.

Theorem 4.1.9: [CV23, section 4] M-SIDH Generalized Lollipop Attacks

Let ¢ : Ey — E be an isogeny of degree d with Ey defined over F,, and let P, @ be a basis of Ey[N],
with N smooth such that N > d. Then, there exists an algorithm named GeneralisedLollipop
that efficiently solve the supersingular isogeny problem with masked torsion point information
over these parameters.

The implications of generalized lollipops are not restricted to M-SIDH and can also be used over other
cryptosystems such as FESTA [BMP23] and CSIDH [CLM™18]. Nevertheless, this attack does not
significantly lower the assumption that the supersingular isogeny problem with masked torsion point
information is hard over random curves, as the probability that a random supersingular curve is defined
in F,, is in ©(p~"?), which is negligible.

4.2 PKE from M-SIDH attacks

The core concept behind SILBE is to leverage the generalized lollipop attack and the GeneralisedLol-
lipop algorithm as a deciphering mechanism, akin to how the original lollipop attack was employed in
designing SETA [FASGF*19]. This endeavor will make usage of all the different isogeny representations
that we detailed in chapter 2. SILBE is in fact related to [CV23, section 4.3] and the idea of M-SIDH
with trapdoor curves, although there are substantial changes that we now detail.

The underlying architecture behind the PKE part of SILBE is given in figure 4.3. It works as follows:

e KG: Alice computes a long isogeny between FEi728 and E4. Using EvalKani, it retrieves the
representing ideal I and use RandomEquivalentldeal to find a short connecting isogeny ¢4 :
Fi708 = E 4. E 4 is then used as the public key while ¢ 4 is the secret key.

e Enc: Bob computes ¢p : E4 — Ep an isogeny. It then sends the masked image by ¢p of a basis
E4[N], with the mask is the message m.

e Dec: Using its knowledge of ¢ 4, Alice uses GeneralisedLollipop over ¢p o ¢4 to retrieve ker(&\g)
and using the discrete logarithm, it retrieves m.

The public parameters of SILBE are constructed as such.
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Figure 4.3: Diagram of the PKE part of SILBE, Alice in red and Bob in blue

Algorithm 14 SILBE.Setup

Input: 1*

Output: pp = (p, (Po, Qo). (Vo,Uo), My, t) with p a prime, (Py, Qo) = Enras[N], (Uo, Vo) =
F1728[3%], My € GLo(N) and t an integer.

1: Take p a prime of the form p = 3°Nf + 1 such that p = 3 mod 4 and N = [T, pi with p;
distinct odd small prime numbers such that N > 3°p!/2 log(p)?, N is coprime to 3 and n big
enough such that for all Ny = ]_[?:k pi, we have that N > V3B =n—k=\

Py, Qo < CanonicalTorsionBasis(FE172s, V)

Uo, Vo < CanonicalTorsionBasis(F72s, 3°)
].\/_[7r <« EvalImageMatrix(Elng, PO, Qo, 7T(P0), 7T(Q0))

t 2]

pp < (p7N7P0aQOa U07V67M7rat)'
return pp

4.2.1 Key generation

As touched earlier, the key generation of SILBE constructs a long isogeny walk with starting curves
F798. This is done to use the following proposition.

Proposition 4.2.1: [DLRW23, Proposition B.2.1]

Let ¢ : E — E’ be an ("-isogeny obtained from a non-backtracking random (-isogeny walk over
Gf. Then, for all € €]0,2], the distribution of E has statistical distance O(p~“/?) to the uniform
distribution in the supersingular isogeny graph, provided that h = (1 + €) log,(p).

By constructing a path of length t of 3°-isogenies py, - - , p;, we get that the degree of their composition
is O(p?) and the end curve distribution will be O(p~"?) statistically close from the uniform distribution,
meaning that it will be computationally indistinguishable from an uniform random sampling. We call
the end curve E4.

We then want to compute Iy, - - - I; the ideals corresponding to p1,--- , p;. This is done using the following
recursive mechanism:
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1. Assume knowledge of k; : F1708 — E; together with its representative ideal J; such that n(J;) is
prime and coprime to 3. Furthermore, assume knowledge of O, a T-evaluation basis over E; with
T # 3 prime. Finally, assume knowledge of I; with 1 < j <.

2. Using KernelTolIsogeny, we can construct p;+1 and find F;;1 and using Og, we can find [; 41
with the KernelToldeal.

3. Then, we have that J;I; 11 is a (O1728, Op, ., )-ideal, using RandomEquivalentIdeal, we find an
ideal J;41 such that n(J;) # n(Jiy1) and n(Jiy1) € [\/plog(p), /plog(p)] is prime. Furthermore,
to speed-up computations, we consider N = [1;_, pi with 2 minimal such that N = p'/41og(p)'/2

and ask for N2 —n(J;) to be prime and equal to 1 mod 4.
Ji
Eires ——— E;

pPi+1|1;

Ei1

4. Now, using EvalTorsion over the above triangle, we evaluate k41 = ¢;,,, over (Py,Qo) =
E1728[N]. We then have constructed a HD representation of ;1.

5. Using ConstructKani over (Py, Qo, ki+1(FPo), ki+1(Qo)) in dimension 4 thanks to N, we get a
Kani’s isogeny F;y; and can therefore evaluate x;y; over any points. This is then used to apply
the PushEndRing over ;41 and Ji; to retrieve Op,,, a n(J;41)-evaluation basis over E; .

Using this mechanism, we compute I; for ¢ = 1,--- ,¢. Additionally, we also compute O, a n(J)-
evaluation basis of End(E4). To speed up the decryption part of SILBE, we use RandomEquivalentIdeal
over J; to find another (O1728, Op, )-ideal I, such that N’ —n(I,,)?3%® =1 mod 4 and is a prime num-
ber, with N’ = p; - ]_[?:2 p?. This ensures that the EvalKani in GeneralisedLollipop is performed in
dimension 4. The reason behind the choice of N’ and not N? comes from the fact N? — n(I;,)?3% =
(N —n(14,)3%)(N +n(Is,)3?) and can therefore never be prime.

Once found, we use EvalTorsion over p; o---0 p; and I; --- I; to evaluate ¢4 (5‘;) and, using a small
subroutine based on Weil’s pairing named EvallmageMatrix, we compute the matrix Mgy, such that
94 (gn) = Mo (51)-

We then set E 4 as the public key and Op,,14,, My, as the secret key. We construct p; in such a way that
our walk cannot be backwards. To do so, we use U;, V; a basis of E;[3°] such that p;(E;—1[3°]) = (V}).
As we set ker(p;+1) = (U; + [ni+1]Vi), we have that it can be any cyclic isogeny of degree 3° except p;.
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Algorithm 15 SILBE.KG
Input: pp = ( ) (P07 Q0)7 (%7 U0)7 M, t)
Output: pk,sk a public/secret key pair.
1 By < Fi72s Jo < O1728 Do« D178
2: for1 <i<tdo
3 Sample n; €g Z3s.
4: E;, p; «— KernelToIsogeny(Ei,l, (Ui—1 + [:]Vie1), 3ﬂ) > Already in pp if i = 1.
5: I; «— KernelToldeal (O, ., (U;—1 + [n:]Vi-1)
6~
7
8
9

Deterministically compute U;, V; a basis of E; [3/2] with (V;) = p;(E;_1[3"]).
Ji «— RandomEquivalentIdeal(J;_ ;)
if n(J;) = n(Ji_1) or and N2 —n(J;) # 1 mod 4 or is not prime do go back to line 7.
: Si, T’z <« EvalTOI‘SiOIl(Dl'ms, Pi O KRj—1, Ji—lli; Zd, Ji7 {Po, QO})
10: F; — ConstructKani(n(Ji), N,N, (Po, Qo, Si, TZ))
11: Op, < PushEndRing(O1798, ki, J;) > k; < F;(0,0,—,0)3
12: Iy, «— RandomEquivalentIdeal(Jt)
13: if N’ —n(I4,)?3% #1 mod 4 or is not prime do go back to line 12.
14: K, L «— EV&]TOI‘SiOIl(Ol'mg,pt o---0pq, I Iy, 1,I¢A,PQ, Qo)
15: My, «— EvallmageMatrix(E,, N, P;,Q:, K, L)
16: pk «— (Et = EA)
17: sk «— (DEt,I¢A,M¢A)
18: return pk, sk.

Algorithm 16 EvallmageMatrix

Input: (E,N,P,Q,X,Y) with E a curve, N smooth integer, (P,Q) = E[N] and X,Y € E[N].

Output: M such that ();) = M(g)

wo < eN(P7 Q)

wy — en(P, X)

W2 < EN (Pv Y)

w3 < EN (X7 Q)

Wy <~ EN (Y, Q)

v1,1 < discretelog(wy, ws, N)

v1,2 < discretelog(wg, w1, N)
( N)
( N)

vg,1 < discretelog(wg, ws,
vg,2 < discretelog(wg, wa,

v v
return < L1 1,2

=
=

V2,1 V22

4.2.2 Encryption & decryption
Encryption

As explained, the message space of SILBE is us(N) = {x € ZN|;B2 = 1}. As N =[], pi, we have that
|p2(N)| = 2™ and we can furthermore construct an efficient mapping between {0, 1} and uo(N) using the
Chinese remainder theorem. To encrypt m, Bob starts to compute a random isogeny ¢p : E4 — Ep of
degree 37. Then, similarly to M-SIDH, we compute the image of the N torsion points through this isogeny
and mask those points using the message m. The ciphertext is therefore Eg, [m]|ép(P), [m]¢os(Q).
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Algorithm 17 SILBE.Enc

Input: pp,pk,m = (p, (Po, Qo), (Vo, UO),Mﬂ,t),EA with m € ps(N)
Output: ct = (EB, R17 RQ) with Rl, R2 S EB[N]

P4, Q4 «—— CanonicalTorsionBasis(E4, N)

Uy, Va «— CanonicalTorsionBasis(FE 4, 3°)

Sample rp €g Z3s

Ep,¢p «— KernelToIsogeny(EA, (Ua + [TB]VA),N)

(7) — [mles(53)

ct «— (EB, Ry, Rg)

return ct

Decryption

As previously stated, we use the GeneralisedLolllpop over d)B o ¢ to decipher our message. Indeed,
using the torsion points in ct, we can define ( ) [m]op oo A( ) Theses points are easily computable

using sk as
P P R
[m]¢poda <Q(;) = [m]My, o5 (Qi) = My, <R;>

We modify the GeneralisedLollipop algorithm of [CV23] such that it just computes ker((gg) and not

the whole ker(¢B/g>\¢A). This speed up the decryption.
We consider the following isogeny

b : Ep — EY
b= (ppoda)? opacds =% 0P opaops

Using lemma 4.1.8, we can evaluate i) over Eg[N] as

S S R
w(T> = n(I¢A)35M7r—17r<T> = n(I¢A)36Mﬂ_1M¢A7r<R;>

We then use EvalKani over ¢ to evaluate ¢ over E¥'[3]. Due to the nature of N’ —n(I,,)?3%, this is
done in dimension 4. Note that it is more efficient to compute two HD-isogenies instead of three, using
the method we detailed i 1n section 2.3.2.

We then have that (E )[35]) = ker(¢)[3°] = r( ¢p). The reason comes from our good choice of
public parameters, as p—1 = 0 mod 3 and thus (Z) = —1, meaning that 3 is inert inside Z[/=p] and
in Z[,/x] with x € End(E) a lollipop endomorphism defined as

X =706% 0da=[~1]¢a 070 da such that x? = [~p(deg 6.4)°]

We thus know ker(q/bg), so we can thus use KernelTolsogeny to compute Q;;(Rl) = [m37]Ps and
retrieve m using the discrete logarithm over E[N].
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Algorithm 18 SILBE.Dec

IHPUt: PP, Ska ct = (p7 (P07 QO)) (‘/07 U0)7M7r7t)a (DEAaLﬁA)MQﬁA)v (EB; Rla R2)
Output: m

P4, Q4 «—— CanonicalTorsionBasis(E4, N)

Up,Vp «— CanonicalTorsionBasis(Eg), 39)

(7) «— Mo (122)

(5) — [n(1,,)3 M 7 () )

G, H «— EvalKani(n(I,,)23%*, N, N/py, (S, T, K, L), Ug, Vi) = $(P) = F(P,0,0,0);
(55 «— KernelTolsogeny(Eg, G + H, 3°) > if G = H, take G
return (37)71. (discretelog(PA,q/ﬁg(Rl),N)) mod N

4.2.3 Security analysis

First and foremost, we see that SILBE is not IND-CPA secure. Indeed, To distinguish between two known
message mg and my, we simply have to multiply R; and Ry by mg and use EvalKani in dimension 8. If
we are able to retrieve ¢p, then this means that the encrypted message was myg, as that would induces
that [mo|R1 = [m3]¢p(P) = ¢p(P). Otherwise, this means that the encrypted message was m; with
overwelming probability. That mechanism can be used to know if a ciphertext ct is the encryption of a
plaintext m or not. This induces that any adversary of SILBE can simulate the oracle Opco. This will
be useful in the following proposition.

Proposition 4.2.2:

The security of SILBE as an OW-qPCA PKE reduces to the supersingular isogeny problem with
masked torsion point information over random curves.

Proof of Proposition 4.2.2:
Using the previously explained method to simulate Opco, we have that

SILBE is OW-qPCA secure <= SILBE is OW-qCPA secure

Following proposition 4.2.1, we have that the distribution of the public key E 4 is O(p_l/ 2) close from the
uniform distribution over supersingular curves, meaning that it is computationally indistinguishable. Let
AOW=aCPA he any adversary for SILBE. We can then construct an algorithm B that solve the supersingular
isogeny problem with masked torsion point information (SSIPMTI) over random curves with the same
advantage. B is defined as such:

1. B receives as input (P,Q,S,T) with P,Q the canonical basis of E[N] and (5) = [m]gp(g) with
¢ : E — E' an isogeny of degree 3.

2. It then calls AOW9PA(E (E’, S, T)) and receive n € pa(N).

3. Tt then compute [n]S, [n]T and use EvalKani in dimension 8 over theses points to retrieve ker(e).
As 37 is smooth, using KernelTolsogeny, it can compute .

We see that if AOW—9CPA succeeds, then so does B, meaning that

P[B solve the SSIPMTI] > AdVOVV-qCPA(AOW—qCPA)
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Thus, under the assumption that the supersingular isogeny problem with masked torsion point informa-
tion over random curves is hard, then SILBE is OW-qPCA secure. To make it IND-qCCA in the ROM,
we can use the U# variant of the Fujisaki-Okamoto transform, as detailed in [JZC* 17, section 4.2].

4.3 Updatability

SILBE is thus OW-qPCA secure and can be made IND-qCCA. We can thus construct PKE from the
generalised lollipop attack. We now make of SILBE an UPKE. The idea behind SILBE key update
mechanism comes from the fact that our key generation mechanism has two excellent properties, namely
that it can be adapted to start over any curve E, provided that we know an isogeny ¢ : Ei708 — E
and that finding the public key can be done by just using KernelTolsogeny, without knowledge of
¢ Firog — E.

4.3.1 Design

Our update mechanism is therefore an adaptation of the key generation and is done as such:
e UG: Generate a seed p € {0, 1}41°8(P),

e Upk: Use a hash function over p to generate a sequence of elements in Zss. Use this sequence to
create kernels of an isogeny walk starting at the public key F 4. Thanks to KernelTolsogeny, we
compute the end curve of that walk, defined as E;, the updated public key.

e Usk: Use a hash function over u to generate a sequence of elements in Zss. Use this sequence to
create kernels of an isogeny walk starting at the public key F 4. Thanks to KernelTolsogeny, we
compute the end curve of that walk, defined as E’;. Using the knowledge of ¢4 : E170s — Ea,
we construct, using EvalKani and RandomEquivalentIdeal an isogeny ¢/, : E1728 — E/4, the
updated secret key.

The underlying architecture of the key update mechanism of part of SILBE is given in figure 4.4.

E E.
11, p1 ! 12, p2 Ti—1, pr—1 =1 I, pt

Figure 4.4: Diagram of the key update mechanism of SILBE, Alice in red and Bob in blue.
Black isogenies are used for the construction of SILBE.Usk.
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Algorithm 19 SILBE. UG
Input: pp = ( 7(P07Q0)7(V0,U0),M7,,t)
Output: g an update.

1: Sample p €g {0, 1}410g(p)

2: return p

Algorithm 20 SILBE.Upk

IHPUt: PP, pk7 B = (p7 (R)a Q(])a (V07 U(])a M‘n’v t) ) EA'
Output: pk’ the updated public key.

1: By — E4 Up, Vo «— CanonicalTorsionBasis(E 4, 3°)

2: (7’]17,’[715)(—H(’LL) l>77iEZ3B
3: for1 <i<tdo

4: E;, p; «— KernelTolsogeny (E;_1, (U;—1 + [7:]Vi—1),3")

5 Deterministically compute U;, V; a basis of F;[3%] with (V;) = p;(E;_1[3°]).

6 pk' — E, = E/,
7: return pk’

Algorithm 21 SILBE.Usk
IIlpllt: PP, sk = (pv (P()v QO)v (%7 UO)» M7T7 t)aDEAa I¢A7M¢A
Output: sk’ the updated secret key.
: By — Ey Jo — Iy Uy, Vp < CanonicalTorsionBasis(E 4, 3%)

1

2: (7’]17,’[775)(—H(/J/) I>77iEZ3B
3: for 1 <i<tdo

4: E;, p; < KernelTolsogeny (E;_1, (U;—1 + [7:]Vi-1), 3")

5: I, «— KernelToIdeal(DEifl, (U; + [ni]‘/i))
6:
7
8
9

Deterministically compute U;, V; a basis of F;[3%] with (V;) = p;(E;_1[3°]).
Ji «<— RandomEquivalentIdeal(J;_11;)
if n(J;) = n(Ji_1) or and N2 —n(J;) # 1 mod 4 or is not prime do go back to line 7.
: Si, TZ «— EvalTOI‘SiOI’l(Dl'mg, Pi O Ki—1, Jiflli, id7 Ji, P()7 QO) > Use M(z, if =1
10: F; «— ConstructKani(n(J;), N,N, (Po, Qo, Si, T3))
11: O, < PushEndRing(O1798, ki, J;) > k; = F(0,0,—,0)3
12: Ty «— RandomEquivalentIdeal(Jt)
13: if N’ —n(Iy,)?3%° # 1 mod 4 or is not prime do go back to line 12.
14: K,L «— EvalTorsion(O172s, k¢, Ji, id, Ly, Po, Qo)
15: My «— EvallmageMatrix(E;, N, P;,Q, K, L)
16: sk’ «— (DEt,qu/, M¢/)
17: return sk’.

To summarize SILBE:

e SILBE.Setup: We find the adequate 3 and N to construct a base prime p = 3° N f + 1 such that
p =3 mod4 and N = [[;, p; with n big enough such that it resists theorem 4.1.7. We also
compute Py, Qo a basis of E[N] and Uy, Vj a basis of E1725[3°]. We compute a matrix M, that
represent the action of m over Py, Qo a basis of Fy725[N].

e SILBE.KG: Sample a uniformly random isogeny ¢ : E1798 — E4 of degree 3%t ~ p%. Recover the
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endomorphism ring Og, of E4. Compute a short ideal Iy, connecting O1728 and O, . Let ¢4 be
the isogeny corresponding to I,. The secret key is ¢4 while the public key is F 4.

e SILBE.Enc: Construct an isogeny ¢p : E4 — Ep of degree 3°. Evaluate ¢p over Py, Q4 the
canonical basis of E4[N] and mask the image with the message m € us(N). The ciphertext is the
curve E'p together with the masked image of P4 and Q4 through ¢p.

e SILBE.Dec: Using the knowledge of ¢4, we apply the GeneralisedLollipop over ¢p o ¢4 to

retrieve ker((gj\g). We then evaluate ¢p over a masked image of ¢4 and retrieve the message m
using discrete logarithms.

e SILBE.UG: Generate a random seed p € {0, 1}*1°8(P),

e SILBE.Upk: Hash p to generate a sequence of elements in Zss. Use this sequence to construct
an isogeny p: E4 — E'; of degree 3'% ~ p?. E/, is the updated public key.

e SILBE.Usk: Hash u to generate a sequence of elements in Zss. Use this sequence to construct an
isogeny p : B4 — E'; of degree 3t8 ~ p2. Recover the endomorphism ring OE?; of E’,. Compute a
short ideal I’y connecting Q1725 and O g, - Let ¢4 be the isogeny corresponding to I4. The updated
secret key is ¢/y.

4.3.2 Security analysis

The reason behind the fact that SILBE remains secure as an UPKE comes from the fact that, in the ROM,
we have that SILBE.Upk is a one way mechanism such that the distribution of the updated public key
E', is statistically close from the uniform distribution and thus from the public key distribution E4 given
by SILBE.KG. Therefore, any adversaries capable of breaking SILBE in the OW-qPCA-U scenario are
also inherently capable of breaking a fresh instance of SILBE in a OW-qPCA scenario. This leads us to
the following proposition.

Proposition 4.3.1
In the ROM,

SILBE is OW-qPCA secure <= SILBE is OW-qPCA-U secure

Therefore, under the assumption that the supersingular isogeny problem with masked torsion point
information is hard over random curves, we have that SILBE is a OW-qPCA-U secure UPKE. To make
of SILBE an IND-CCA-U UPKE, we use the transformation in [AW23, section 4]. It transforms a OW-
qCPA-U UPKE into an IND-CCA-U UPKE in the ROM.? To do so, we need to show that SILBE is
A-spread [AW23, definition 7] but this is a direct consequence of proposition 4.2.1 and of the fact that
3% » 2*, as we will now show.

4.3.3 Parameters & Efficiency
Finding “SILBE-friendly” primes

As we previously explained in SILBE.Setup, our public parameters and especially the cross relation
between 8 and N forces N to have many prime factors. To find good N and S, we do as follows:

o If N <35 /plog(p)* ~ 33/2N'/2(log(N) + Blog(3)), we increase the size of N.

2Using their security definition, we indeed have that SILBE is an OW-CR-CPA.
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e If N, > 35/2 and n — ¢t < )\, we increase the size of 3.

Once we have found N and 3, we find a good cofactor such that p = 3°Nf + 1 is prime. Using this
method, we found the following parameters:

e For \ = 128:
B=2043 N=5x7x11x---x6863 [f=1298

Here, N = [[_, p; with n = 881 and p = BN f + 1 is 13013 bit long.

e For A\ = 192:
8=3220 N=5x7x11x---x10789 f=1790

n = 1312 and p is 20538 bit long.

e For \ = 256:
B =4461 N =5xT7x11x---x14879 f =16706

n = 1741 and p is 28346 bit long.

We see that in SILBE, we need N to have slightly less than 7\ distinct prime divisors.

Efficiency of SILBE

The main issue with SILBE is its efficiency. This essentially comes from the size of the parameters, to-
gether with performing Kani in dimension 4 with relatively large primes. For example, the number of field
operations needed to perform the HDKernelTolsogeny in SILBE.Dec is in the order of 7°\° log(\)?,
which is, for A = 128, around 2%°. Nevertheless, we can improve the efficiency of SILBE.Usk and
SILBE.KG as follows:

e We could adapt the RigorousDoublePath [DLRW23, Algorithm 12] and replace Kani’s Lemma
by the KLPT for key generation and update mechanism. This would nevertheless require a change
of prime p, as we would need for p to be of the form p = 3% F + 1 such that N|p? — 1 with N > p®/2.
This is very similar to the primes used in SQISign [FKL*20]. Finding such primes would be difficult,
which is the reason we choose to present SILBE.Upk using HD isogenies.

e We could also speed up the key generation by reusing KaniDoublePath to directly construct an
isogeny ¢4 : E1798 — E 4, this would nevertheless require additional assumption to ensure that the
distribution is computationally indistinguishable from uniform.

Additionally, due to the size of p, we see that we can shorten the length of our path such that our
distribution is not O(p~"?) -statistically close from uniform, but just O(2~*), which would be sufficient.
Finally, to finish this chapter, we would like to highlight the fact that our update mechanism could be
slightly changed to not require a hash function. This comes from the fact that our update mechanism is
very similar to the CGL hash function [CGL06]. We can thus adapt [CGLO06, section 5] and get that the
problem of finding p such that SILBE.Upk(E, u) = E’ reduces to isogeny walk problem and thus that
our key update mechanism is one-way. Nevertheless, we would require some modifications of the public
key as we would have to add V; € E4[3°] such that (V;) = p;(E;_1[3°]) to ensure that the update long
isogeny is not backtracking. To keep the same security level, we would also need to compute a slightly
longer isogeny.
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Future directions

With the completion of chapters 3 and 4, the presentation of SQIPrime and SILBE marks the conclusion
of this thesis. These two mechanisms, being distinct in nature, lead to different avenues for further
exploration.

For SQIPrime, the logical next step involves a practical implementation of the scheme. Implementing
SQIPrime would not only validate its theoretical underpinnings but also provide a platform to assess its
efficiency. Additionally, an aspect deserving further scrutiny is the thorough exploration and refinements
of assumption 3.2.1.

In the case of SILBE, an intriguing avenue for research lies in investigating whether its underlying
principles can be extended to other cryptographic protocols vulnerable to generalized lollipop attacks,
such as FESTA. Exploring this application could potentially enhance SILBE’s efficiency.

On a more general note, a pivotal question for exploration is the refinement of HDKernelTolsogeny.
While its results over a prime ¢ currently align with Vélu’s formulas, there certainly exists opportunity
for improvement. An avenue to explore is the construction of a higher-dimensional analog akin to v/élu
[BFLS20]. This exploration could shed light on novel possibilities to use HD-isogenies in Isogeny Based
Cryptography.
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