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Abstract:
We present two new isogeny based cryptographic protocols: SQIPrime and SILBE. The first is a signature
scheme inspired by SQISign that relies exclusively on isogenies of prime degree, while the second is an
Updatable Public Key Encryption scheme based on M-SIDH and on the generalized lollipop attack. Both
protocols make extensive usage of the multiple isogeny representations used in cryptography.

Introduction

The discovery in Shor’s seminal paper [Sho94] of a quantum algorithm able to efficiently solve both
factoring and discrete logarithm problems highlighted the security risks presented by the development
of quantum computers and propelled the development of Post Quantum Cryptography. Isogeny-Based
Cryptography is a relative newcomer in the field of Post-Quantum Cryptography, as although it traces
its roots to Couveignes’ 1997 rejected paper [Cou06], it only started gaining serious traction in the late
2000s due to its inherent compactness and seemingly heightened resistance to quantum cryptanalysis,
reminiscent of Elliptic Curve Cryptography on which it builds upon. Instead of relying on scalar multi-
plication over elliptic curves, Isogeny-Based Cryptography employs rational maps between curves, aptly
named isogenies. These isogenies are interesting as they remain efficiently computable and have many
interesting structures. For example, the first efficient key exchange protocols proposed in [RS06] relied on
isogenies induced commutative group action, as this commutative group action stands resilient against
Shor’s algorithm while preserving essential properties to perform Diffie-Hellman key exchange.
Since its inception, the field has rapidly expanded and diversified. Isogenies, echoing Henri Poincaré’s
maxim that “Mathematics is the art of giving the same name to different things,” assume various forms
— rational maps, torsion subgroups, matrices, ideals between orders of quadratic or quaternion algebra,
edges in regular graphs, morphisms of lattices, and more. Leveraging this multitude of isogeny represen-
tation has been instrumental in constructing key exchange mechanisms [RS06, FJP11, CLM`18, FMP23,
...], public key encryption schemes [Mor23, BMP23, NO23, ...], signature schemes [GPS16, FKL`20,
DLRW23, ...] or hash functions [CGL06].

In this thesis, we contribute to this evolving landscape by presenting a new isogeny-based signature
scheme named SQIPrime, alongside a novel updatable public key encryption scheme named SILBE. Both
leverage the versatility of the multiple isogeny representations. This thesis is organized into the following
chapters:

- Chapter 1, introduces all the necessary preliminaries on elliptic curves and isogenies that we will
use throughout this thesis.

- Chapter 2 presents a family of algorithms that are used to efficiently utilize isogenies under their
different representations. We build upon these algorithms to construct our cryptographic protocols.

- Chapter 3 details SQIPrime, a variant of the signature scheme SQISignHD based only on prime
degree isogenies.

- Chapter 4 details SILBE, an Updatable public key encryption scheme based on M-SIDH and on
the generalised lollipop attacks.

As you navigate through these chapters, we wish you a pleasant and insightful reading.
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Chapter 1

Mathematical background on elliptic
curves

Cryptography has always had deep roots in mathematics, a connection that became particularly apparent
with Public Key Encryption as the security of such cryptographic schemes is inherently tied to mathemat-
ical problems that are computationally hard in one way, such as the discrete logarithm or the factoring
problem. Understanding the mathematical underpinnings of cryptographic primitives and algorithms is
paramount, and this necessity is further underlined in the era of post-quantum cryptography. While the
factoring problem may be relatively straightforward to comprehend1, code-based or lattice-based cryp-
tography already demand a more profound mathematical knowledge and experience. The same holds for
isogeny-based cryptography, as it is grounded in algebraic geometry—an advanced domain of mathemat-
ics. The objective of this chapter is thus to define central concepts and highlight the core mathematical
properties of elliptic curves and isogenies. These properties will serve as the bedrock upon which we will
construct subsequent chapters.

Throughout this chapter, we denote K a general field and K its algebraic closure. Additionally, we also
consider field such that charpKq ‰ 2, 3.

1.1 Elliptic curves

1.1.1 Equations

Before defining the notion of elliptic curve, we need to define the notion of projective space. Although
we most often work in the affine space, some properties of elliptic curves are easier to understand when
seeing them as subspaces of projective spaces.

Definition 1.1.1: Projective spaces

The n-th projective space Pn is the set of equivalent classes over K
n`1

zt0u under the following
equivalence relation.

px0, ¨ ¨ ¨ , xnq „ py0, ¨ ¨ ¨ , ynq ðñ Dλ P K,λ ‰ 0 such that xi “ λyi

1which is not at all the case of its cryptanalysis.
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A point of Pn is noted rX0 : ¨ ¨ ¨ : Xns and the K-rational space PnK is the set of all rX0 : ¨ ¨ ¨ : Xns

such that Xi P K for all i “ 0, ¨ ¨ ¨ , n.

To go from the projective space to the affine space K
n

(usually noted as An), we use the standard
(de)homogenisation maps ϕi, that link An with the projective subset Ui “

␣

rX0 : ¨ ¨ ¨ : Xns P Pn
ˇ

ˇXi ‰ 0
(

ϕi : An ÝÑ Ui Ă Pn

ϕi
`

x1, ¨ ¨ ¨ , xn
˘

ÝÑ rx1 : ¨ ¨ ¨ , xi´1 : 1 : xi`1 : ¨ ¨ ¨ : xns

ˆ

X0

Xi
, ¨ ¨ ¨ ,

Xi´1

Xi
,
Xi`1

Xi
¨ ¨ ¨ ,

Xn

Xi

˙

ÐÝ ϕ´1
i

`

rX0 : ¨ ¨ ¨ , Xi´1 : Xi : Xi`1 : ¨ ¨ ¨ : Xns
˘

We now define elliptic curves using the Weierstrass equation.

Definition 1.1.2: Elliptic curves

An elliptic curve E is defined as the subset of P2 given by the zeros of the Weierstrass equa-
tion:

Y 2Z “ X3 `AXZ2 `BZ3

with A,B P K and such that 4A3 ` 27B2 ‰ 0.
r0 : 1 : 0s is the base point of E.

Additionally, we say that E is defined over K whenever A,B P K and denote as EpKq the K-rational
points of E. Note that r0 : 1 : 0s is the only point of E such that Z “ 0.
The Weierstrass equation given above describe all elliptic curves whenever charpKq ‰ 2, 3. Using the
dehomogenizing over Uz, we can also define an elliptic curve over the affine space A2 as follows.

E “
␣

px, yq P A2
ˇ

ˇy2 “ x3 `Ax`B
(

Y t8u

with 8 the base point of E.
The reason we ask for 4A3 ` 27B2 to be non-zero is that we want E to be a smooth curve whose tangent
space is well-defined at any points of E, which is equivalent to having 4A3 ` 27B2 ‰ 0. Curves given by
the Weierstrass equation such that 4A3 ` 27B2 “ 0 are called singular curves.

y2 “ x3 ´ 3x` 3

elliptic curve

y2 “ x3 ´ 3x` 2

singular curve
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1.1.2 Group structures

Definition 1.1.2 establishes that elliptic curves are regular projective varieties of dimension 1, like parabo-
las or hyperbolas. However, what distinguishes elliptic curves from other such varieties is their abelian
group structure. To be more precise, elliptic curves are categorized as abelian varieties of dimension 1.

Definition 1.1.3: abelian varieties

An abelian variety V is an algebraic variety with:

• a zero point 0 P V .

• a group law morphisma

` : V ˆ V ÝÑ V

• an inversion morphism
i : V Ñ V

and such that pV, 0,`, iq has an abelian group structure.

aA morphism of varieties essentially consists in a change of variable given by homogeneous rational maps of
multivariable polynomials. See [Sil09, I.3] for greater details.

This definition is straightforward but it is not clear how to find an abelian group structure on elliptic
curves. If we take two distinct points P,Q P E, what should be P ` Q? and how to do in such a way
that this is commutative?
The answer is given by the fact that there exists a unique line that pass throw both P and Q. If we
assume that this line passes through E at exactly one another point R. Then this point would be a good
choice to be defined as P ` Q. This is almost how the group law is defined as to ensure associativity, if
R “ rX : Y : Zs, then we must define P `Q as its inverse rX : ´Y : Zs. Now, what occurs when P “ Q?
As Q gets closer to P , we have that the line passing thought both points becomes the tangent of E at
the point P . If this line intersects E at another point, then we could define P ` P similarly to how we
defined P `Q. This later point explain why we asked for elliptic curve to be smooth.

P

Q

R

P `Q

P

R

2P

Figure 1.1: [DF17] Visualization of the group law of elliptic curve.

Now, the reason we can assume that the elliptic curve E and the line defined by P and Q will have an
additional intersection points comes from Bezout’s theorem.

7



Theorem 1.1.4: [Sha16, III.2.2.2] Bezout’s theorem

Let V1 and V2 be two subsets of P2 defined as the zeros of two distinct prime homogeneous
polynomials f1 and f2. Then, V1 and V2 intersect at exactly degpf1qdegpf2q points, counted with
their respective multiplicities.

As elliptic curves are given by Weierstrass equations, itself a polynomial of degree 3 and that a line is
of degree 1, the Bezout’s theorem ensures us that there are always 3 intersection points, P,Q and R,
meaning that our idea of addition is well-defined. By looking at the equation of both E and of the line
defined by P and Q, we can properly define the group law and more generally the abelian group as
follows.

Theorem 1.1.5: Elliptic curve group law

Any elliptic curve E : y2 “ x3 `Ax`B is an abelian variety of dimension 1 with:

• 0 as the base point 8

• the inversion map given by ipx, yq “ px,´yq

• the group law given by px1, y1q ` px2, y2q “ px3, y3q such that

x3 “ λ2 ´ x1 ´ x2

y3 “ px1 ´ x3qλ´ y1

with λ “

#

y2´y1
x2´x1

if x1 ‰ x2
3x2

1`A
2y1

otherwise

with the additional rule that P ` ipP q “ 0.

All the proof details can be found in [Sil09, section III.2] and even more as this theorem is proven for
elliptic curves over field of any characteristic. This significantly complexifies the equations.
Elliptic curves are thus abelian varieties of dimension 1, often called abelian curves. They are in fact
THE abelian curve, as following [Sil09, section II.3], we can show that any abelian curve of genus 1 is
in fact isomorphic to an elliptic curve. This essentially comes from the fact that there is an equivalence
between abelian curves and an object called the Picard group.2 This result will be useful for the notion
of dual isogeny and to understand the difference between elliptic curves and higher dimensional abelian
varieties.

Theorem 1.1.6: [Sil09, III.3.4] Abel-Jacobi isomorphism

Let E be an elliptic curve. Then, the Abel-Jacobi map

λ : E Ñ Pic0pEq

λpP q “ rP s ´ r0s

is an isomorphism.

2See [Sha16, IV.1 & IV.4] for a proper definition using Weil’s and Cartier’s divisors.
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1.1.3 j-invariant

Still, two curves given by different Weierstrass equations can be isomorphism, so we need a method to
characterize elliptic curve up to isomorphism. This is why we introduce the notion of j-invariant.

Definition 1.1.7: j-invariant

Let E be an elliptic curve induced by y2 “ x3 `Ax`B. The j-invariant of E is defined as

jpEq “ 1728
4A3

4A3 ` 27B2

At first glance, the notion of j-invariant describes a link between A and B but it is not striking that it
characterize isomorphism of elliptic curves, but it is the case.

Theorem 1.1.8: [Sil09, III.1.4] j-invariant theorem

Let E : y2 “ x3 ` A1x ` B1 and F : y2 “ x3 ` A2x ` B2 be two elliptic curves defined over K,
then

E – F ðñ A2 “ µ4A1 and B2 “ µ6B1 with µ P K˚

This induces that
E – F ñ jpEq “ jpF q

jpEq “ jpF q ñ E – F over a field L

with L a K-field extension of degree:

• dividing 6 if jpEq “ 0.

• dividing 4 if jpEq “ 1728.

• dividing 2 for any other jpEq P K.

Note that if K “ K, then j-invariant and isomorphism are equivalent. The j-invariant is especially
interesting in cryptography as it enables us to define canonical representation of isomorphism class, i.e.,
fixing one Weierstrass equation among all possible to define elliptic curves of j-invariant j0. A common
canonical representation is given below but other representations are often used.

j0 Ej0
0 y2 “ x3 ` 3

1728 y2 “ x3 ` x
otherwise y2 “ x3 ` 3j0p1728 ´ j0qx` 2j0p1728 ´ j0q2

Additionally, it is relatively straightforward to construct a curve that is not isomorphic to E but with the
same j-invariant. This curve is called the quadratic twist. This notion of quadratic twist is very handy
to work with torsion points in finite fields, as we shall see in section 1.3.2.

Definition 1.1.9: Quadratic twist

Let E : y2 “ x3 ` Ax ` B be an elliptic curve defined over K and let d P K be a not square
number. the quadratic twist of E, noted Ed is the elliptic curve given by

Ed : dy2 “ x3 `Ax`B ðñ y2 “ x3 ` d2Ax` d3B

9



Note that jpEdq “ jpEq and that Ed and E are only isomorphic in Kr
?
ds, not K.

1.2 Isogenies

The challenge we now face is that the concept of projective morphism does not adequately consider the
group structure inherent in elliptic curves. Therefore, we need to enhance our definition of morphisms for
elliptic curves. These refined morphisms are called isogenies. They possess significant and foundational
properties, which we will elaborate on in detail throughout this section.

1.2.1 Rational maps

We will initially introduce isogenies through their structure as morphisms of varieties, i.e. as ratio-
nal maps. While this representation is heavy, it is the most natural and facilitates the definition and
comprehension of several central concepts in isogenies.

Definition 1.2.1: Isogenies

Given X,Y two abelian varieties of same dimension defined over K, an isogeny is a map

ϕ : X Ñ Y

such that:

• ϕ is a projective morphism defined over K.a

• ϕ is also a group morphism.

• kerpϕq is finite.

Additionally, two isogenies ϕ : E Ñ F and ψ : E1 Ñ F 1 are isomorphic if there are isomorphisms
ι : E – E1 and κ : F – F 1 defined over K such that the following diagram is commutative

E F

E1 F 1

ϕ

κι

ψ

ameaning that it is given by homogeneous rational maps of multivariable polynomial that are defined over K.

Examples 1.2.2:

• The inverse map
r´1s : E Ñ E

px, yq Ñ px,´yq

• The [2] map
r2s : E Ñ E

10



px, yq Ñ

ˆ

p3x2 `Aq2 ´ 8xy2

4y2
,
12xy2p3x2 `Aq ´ p3x2 `Aq3 ´ 8y4

8y3

˙

• If K is of characteristic p, then, given E : y2 “ x3 ` Ax ` B, we define Eppq : y2 “

x3 `Apx`Bp. We have that jpEppqq “ jpEqp. Furthermore, the Frobenius map

π : E Ñ Eppq

π : px, yq Ñ pxp, ypq

is an isogeny.

In general, the equations that generate projective morphisms are often not practical to work with. See
for example [Was08, section 3.2] for the equations of the scalar maps rns, with n P Z. Nevertheless, due
to the group preserving nature of isogenies, they exhibit a canonical form.

Lemma 1.2.3: [Sut15, Lemma 5.25] Canonical form of isogenies

Let E1 : y2 “ f1pxq and E2 : y2 “ f2pxq be two elliptic curves and let ϕ : E1 Ñ E2 be an isogeny
between the two. Then ϕ is uniquely characterized by the map

ϕpx, yq “

ˆ

upxq

vpxq
,
spxq

tpxq
y

˙

with upxq coprime to vpxq and spxq coprime tpxq, v3pxq
ˇ

ˇt2pxq and t2pxq
ˇ

ˇv3pxqf1pxq.

Some isogeny properties are linked to properties of their canonical form. This is the case for the following
notions.

Definition 1.2.4: Degree and separability of isogenies

Given ϕ : E Ñ F an isogeny in canonical form ϕpx, yq “

´

upxq

vpxq
, spxq

tpxq
y
¯

.

• The degree of ϕ is given by

deg ϕ “ max tdeg upxq,deg vpxqu

• ϕ is said separable if
´u

v

¯1

“
u1v ´ v1u

v2
‰ 0

Otherwise, it is inseparable

Following this definition, we have that r´1s is separable and of degree 1, that the r2s map is of degree 4
and separable while the Frobenius isogeny is of degree p and is inseparable. The Forbenius isogeny is in
fact the quintessential insperable isogeny as given by the following theorem.
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Theorem 1.2.5: [Sut15, Theorem 6.4] Decomposition of isogeny

Let ϕ : E Ñ F be any isogeny. ϕ can be decomposed as

ϕ “ ϕs ˝ πn

with ϕs a separable isogeny and π the Frobenius isogeny.

This induces that deg ϕ “ degpϕsq ¨ pn. This value pn is sometimes called the inseparable degree
degipϕq “ pn. πn is a slight abuse of notation to represent the isogeny between E and Eppnq given
by the composition of Frobenius isogeny. Theorem 1.2.5 has many corollaries such that it induces that
all isogenies are separable if charpKq “ 0. Among all other, the following two are the bedrock of Isogeny
Based Cryptography.

Corollary 1.2.6: [Sut15, Corollary 6.8] Kernel-degree connection

Let ϕ : E Ñ F be any isogeny defined over K. Then

| kerϕ| “ deg ϕs

Corollary 1.2.7: [Sut15, Corollary 6.10] Degree of composition

Let ϕ : E Ñ F and ψ : F Ñ G be two isogenies. Then:

| kerpψ ˝ ϕq| “ | kerψ| ¨ | kerϕ|

degipψ ˝ ϕq “ pdegi ψqpdegi ϕq

degpψ ˝ ϕq “ pdegψqpdeg ϕq

1.2.2 Vélu’s formulas

The canonical form characterize isogenies as rational maps, but this representation remains somewhat
impractical. We would therefore like to represent isogenies in a more efficient and compact manner. We
have seen in theorem 1.2.5 that isogenies are composed of a separable part and of the Frobenius isogeny.
Furthermore, we have shown in corollary 1.2.6 that their degree was fully determined by their kernel, but
this link between isogeny and kernel is deeper. If we just see isogenies as surjective group morphism, then
the fundamental theorem of isomorphism tells us that the image curve must be isomorphic to E{ kerpϕq

i.e. that ϕ is entirely determined, as a group morphism, by its domain and its kernel. This intuition can
be proven right using the Vélu’s formulas. We will first state the following theoretical theorem.

Theorem 1.2.8: [Sil09, III.4.12]

Let E be an elliptic curve defined over K and let G be a finite subgroup of E. Then, there exists
an isogeny ϕ

ϕ : E Ñ E{G

with ϕ unique up to isomorphism.
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Corollary 1.2.9: Prime factorisation of isogenies

Let ϕ be a separable isogeny of degree d. Seeing d as
śn
i“1 pi with pi prime numbers, then ϕ can

be written as
ϕ “ ⃝n

i“1ϕi

with ϕi being isogenies of prime degree pi.

Proof of Corollary 1.2.9:
This proof is done recursively over d. Consider G “ kerpϕq. It is a finite abelian subgroup of E. Therefore,
using Cauchy’s theorem, we can find P1 P G of order p1. Using theorem 1.2.8, we can thus define.

ϕ1 : E Ñ E{xP1y

Then, the set ϕ1pGq is a subgroup of E{xP1y of order d{p1 “
śn
i“2 pi so we can recursively write the

isogeny generated by ϕ1pGq as ⃝n
i“2ϕi. By composing both maps, we get our desired decomposition.

l 1.2.9

Theorem 1.2.8 is mathematically elegant but it remains somewhat theoretical. This is where Vélu’s formu-
las come into play, significantly enhancing practicality. Vélu’s formulas render theorem 1.2.8 computable
by providing the following equations.

Theorem 1.2.10: [Vél71] Vélu’s formulas

Let E : y2 “ x3 `Ax`B be an elliptic curve defined over K.

• Let px0, 0q P E. Set t “ 3x20 `A and w “ x0t

ϕ : E Ñ F

ϕpx, yq “

ˆ

x2 ´ x0x` t

x´ x0
,

px2 ´ x0q2 ` t

px´ x0q2
y

˙

is a separable isogeny with kerϕ “ t0, px0, 0qu and F given by y2 “ x3 ` A1x ` B1 with
A1 “ A´ 5t and B1 “ B ` 7w.

• Let G Ă E be a finite group of odd order. Then, for all Q P G, set

tQ “ 3xQ `A wQ “ 2y2Q ` tQxQ

rpxq “ x`
ÿ

GPGz0

˜

tQ
x´ xQ

`
2y2Q

px´ xQq2

¸

Then,
ϕ : E Ñ F

ϕpx, yq “
`

rpxq, rpxq1y
˘

is a separable isogeny with kerϕ “ G and F given by y2 “ x3 `A1x`B1 with:

A1 “ A´ 5

¨

˝

ÿ

GPGz0

tQ

˛

‚ B1 “ B ` 7

¨

˝

ÿ

GPGz0

wQ

˛

‚

13



Note that if the points of G are defined over K, then ϕ is defined over K. In fact, Vélu’s formulas show
that, up to isomorphism, any isogeny is defined over K if and only if its kernel is a subgroup of EpKq.

1.2.3 Dual isogeny

Another central notion of isogenies of elliptic curves is that they induce an inverse like isogeny named
the dual isogeny and defined as such

Definition 1.2.11: Dual isogeny

Let ϕ : E Ñ F be an isogeny between two elliptic curves. The dual isogeny of ϕ noted pϕ is an
isogeny defined as such.

pϕ : F ÝÑ E

P Ñ
ÿ

Q“ϕ´1pP q

rdegipϕqsQ´
ÿ

QPkerpϕq

rdegipϕqsQ

This definition is in fact induced by the composition F
λ

ÝÝÑ Pic0pF q
ϕ˚

ÝÝÑ Pic0pEq

ř

ÝÝÑ F , with λ the

Abel-Jacobi map. Note that, thanks to the Vélu’s formulas, if ϕ is defined over K, then so does pϕ.

Theorem 1.2.12: [Sil09, III.6.2]

Let ϕ, κ : E0 Ñ E1 and ψ : E1 Ñ E2 be isogenies.

1. Inverse: pϕ is the unique isogeny up to isomorphism such that

pϕ ˝ ϕ “ rdegpϕqs and ϕ ˝ pϕ “ rdegpϕqs

2. Composition:
zϕ ˝ ψ “ pψ ˝ pϕ

3. Sum:
{ϕ` κ “ pϕ` pκ

4. Multiplicative maps:
yrms “ rms

This implies that degprmsq “ m2.

5. Duality :
p

pϕ “ ϕ

6. Degree:
deg pϕ “ deg ϕ

Another important notion in isogeny based cryptography consists in isogeny pushforwards. They are
defined using Vélu’s formulas.

14



Definition 1.2.13: Pushforwards

Let ϕ : E Ñ F and ψ : E Ñ F 1 be two isogenies of coprime degree. The pushforward of ψ by ϕ
is the isogeny ϕ˚ψ : F Ñ E1 defined by kerpϕ˚ψq “ ϕ

`

kerpψq
˘

.

Note that this definition is in line with the universal pushforward property, meaning pushforwards they
are the unique isogenies up to isomorphism such that the following diagram is commutative.

E F

F 1 E1

//ϕ

��

ψ

//ψ˚ϕ
��

ϕ˚ψ

1.3 Endomorphism rings

We now study the ring structure of elliptic curve endomorphisms. It is indeed central in many cryptosys-
tems such as [CLM`18, FKL`20, ...]. This section consists only of a basic introduction, as we will delve
more into details during section 1.4.2. We also detail some properties of torsion points.

1.3.1 Order

Definition 1.3.1: Endomorphism ring

Let E be any elliptic curve defined over K, The endomorphism ring EndpEq consists in

tφ : E Ñ E an isogenyu Y t0u

with 0 corresponding to the zero map and the multiplication induced by composition.
EndKpEq is the subring consisting of endomorphism defined over K.

We have by definition that Z – trns|n P Zu Ď EndpEq. This induces that EndpEq is of characteristic 0.
The notion of degree for 0 is usually defined as 0 to remain consistent with corollary 1.2.6. The degree of
0 this can be used to show that EndpEq is an integral ring as ϕψ “ 0 would be impossible if one of ϕ and
ψ were not 0. In addition to the degree, endomorphisms are described by another quantity, their trace.
The trace and degree are in fact sufficient to uniquely characterize any endomorphism up to duality.

Definition 1.3.2: Trace of an endomorphism

Let E be any elliptic curve and let EndpEq be its endomorphism ring. The trace of an endomor-
phism α P EndpEq is defined as

tr : EndpEq Ñ Z

trpαq “ pα ` α “ degpα ` 1q ´ degα ´ 1

Following theorem 1.2.12 and corollary 1.2.7, we have that trpα ` βq “ trpαq ` trpβq and degpαβq “

degpαqdegpβq. We now restrict our field K to be a finite field Fq with q “ pn. We then have that EpFqq
can be seen as kerpπn ´ 1q as any element x P Fq can be seen as an element x P Fq such that xq ´ x “ 0.
Let πE be πn with πE P EndpEq. πE can be used to compute the size EpFpq.

15



Theorem 1.3.3: Hasse’s Theorem

Let E be any elliptic curve defined over Fq. Then,

|EpFqq| “ q ` 1 ´ t

with t “ trpπEq and |t| ď 2
?
q.

Proof of Theorem 1.3.3:
As previously explained, we have that

EpFqq “
␣

P P E over Fq
ˇ

ˇπEpP q ´ P “ 0
(

“ kerpπE ´ 1q

Furthermore, as πE is inseparable and r´1s is separable, we have that πE ´ 1 is separable, meaning

by corollary 1.2.6 that degpπE ´ 1q “ | kerpπE ´ 1q| “ |E|. As degpπE ´ 1q “ pπE ´ 1q {pπE ´ 1q “

deg πE ´ trpπEq ` 1, we get the equation

|EpFqq| “ q ` 1 ´ trpπEq

Now, let us show that |trpπEq| ď 2
?
t. To do so, consider a, b P Z ˆ Z˚. The endomorphism aπE ´ b has

degree

degpaπE ´ bq “ paπE ´ bqpxπEpa´pbq

“ aπExπEpa´ aπEpb´ bxπEpa` bpbq

“ a2 degpπEq ´ aπEb´ bxπEa` b2

“ a2q ´ abtrpπEq ` b2

As degpaπE ´ bq ě 0, we have that

0 ď

´a

b

¯2

q `

´a

b

¯

trpπEq ` 1

i.e. that the for all values of ν P Q, qν2 ´ νtrpπEq ` 1 ě 0. As Q is dense in R, this means that the
determinant of the polynomial is strictly smaller than 0 i.e, that

trpπEq2 ´ 4q ď 0 ðñ |trpπEq| ď 2
?
q

l 1.3.3

Furthermore, the bound of |trpπEq| ď 2
?
q is tight, as we can find elliptic curve of any trace inside this

bound.

Corollary 1.3.4:

Let E be any elliptic curve defined over Fq and let Ed be its quadratic twist. Then

trpπEdq “ ´trpπEq

Proof of Corollary 1.3.4:
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Inside Fq the product of two non-square numbers is a square. Therefore, for any value x P Fq, we either
have that x3 `Ax`B has a root, meaning that x defines two points in E, or that it has not, and it then
defines two points in Ed. Using Hasse’s Theorem, we get that

2q “ 2|Fq| “ |Epqq| ` |Edpqq| ´ 2 “ 2q ´ trpπEq ´ trpπEdq

proving this corollary. l 1.3.4

Now that we have introduced the trace of endomorphims and its immediate properties, we see it strongly
restricts the possible form of EndpEq, as it can only be an order of very specific algebras. Let us first
define the notion of order.

Definition 1.3.5: Order

Let A be a K-algebra of finite dimension and of characteristic 0. An order of A, denoted O, is
a strict subring of characteristic 0 such that O bZ K “ A. An order is furthermore said to be
maximal if it is not contained in another order.

Among all algebras, we are particularly interested in the following two families:

• Quadratic fields Qp
?
dq: A 2-dimensional Q-algebra with basis p1, αq and

α2 “ d

If d ą 0, it is a real quadratic field, otherwise, it is a complex quadratic field.

• Quaternion algebras Bp,8
3: A 4 dimensional Q-algebra with basis p1, α, β, αβq and

α2 “ a β2 “ ´p αβ “ ´βα

Theorem 1.3.6: [Sil09, III.9.3]

Let E be an elliptic curve. Then,

• EndpEq – Z if charpKq “ 0.

• EndpEq is an order of a complex quadratic field Qp
?
dq

• EndpEq is an order of a quaternion algebra Bp,8

This theorem can also be refined over EndKpEq when K “ Fq. For any curve E defined over Fq such that

πE R Z, we can prove that EndFq pEq is an order of Qr
?
ds, with d “ trpπEq ´ 4q. See [Sut15, theorem

14.6] for a proof.

1.3.2 Torsion points

To close this section, we will discuss torsion points. Following Vélu’s formulas, we have that isogenies
are given by their kernels, finite subgroups of elliptic curves. Furthermore, following theorem 1.2.12, we
have that the kernel of isogeny of degree d are subgroups of the kernel of the scalar endomorphism rds,
i.e. they are subgroup of the torsion subgroups.

3This notation is inherited from ramification theory. Indeed, we are especially interested in quaternion algebra that are
ramified at points p and 8. See [Voi21, chapter 14] for more details.
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Definition 1.3.7: n-torsion subgroup

let E be an elliptic curve, the n-torsion subgroup Erns is given as

Erns “ ker
`

rns
˘

Theorem 1.3.8: [Sut15, Theorem 7.1]

Let p the characteristic of K and q be a prime number.

Erqℓs “

"

Zℓp or 0 if p “ q
Zqℓ ˆ Zqℓ otherwise

Note that using the Chinese remainder theorem, theorem 1.3.8 characterizes the group structure of ErN s

for any N P N˚. The group structure of ErN s in conjunction with Vélu’s formulas tells us that, up to
isomorphism, there are exactly ℓ ` 1 isogenies of prime degree ℓ, as there exists only ℓ ` 1 subgroups of
order ℓ in Z2

ℓ . If we set P,Q a basis of Erℓs, we can characterize all these groups as follows.

xP y, xP `Qy, xP ` 2Qy, ¨ ¨ ¨ , xP ` pℓ´ 1qQy, xQy

Furthermore, any isogeny ϕ : E Ñ F restricted over torsion points define a ZN -linear applications
ϕ|ErNs : ErN s Ñ F rN s, meaning that we can also represent the action of isogenies over torsion points as
matrices of dimension 2.
This representation is especially useful when correlated with the Cauchy interpolation theorem [Bie53],
as it enables easy characterization of isogenies. To do so, we use the fact that the map

a

degp´q defines
a norm over the space of all isogenies between two elliptic curves E and F . This is because the degree
map is positive definite quadratic form [Sil09, V.1.2].

Corollary 1.3.9:

Let ϕ, ψ : E Ñ F be two isogenies of maximal degree m and let N be an integer such that
N ě 2

?
m` 1. Then

ϕ|ErNs “ ψ|ErNs ðñ ϕ “ ψ

Proof of Corollary 1.3.9: Assume that ϕ ‰ ψ. Then, using the triangular inequality over ϕ and ψ, we
get that

degpϕ´ ψq ď

´

a

degpϕq `
a

degpψq

¯2

ď 4m

meaning using corollary 1.2.6 that | kerpϕ´ψq| ď 4m but ϕ|ErNs “ ψ|ErNs implies that ErN s Ď kerpϕ´ψq

and thus that 4
?
m` 1 ď 0, a contradiction. l 1.3.9

Finally, to finish this section, we will have a small word about elliptic curve pairing. Pairing are bilinear
and non-degenerative maps between curves to finite subgroup. Among all pairing, we will essentially use
the Weil’s pairing eN as defined in [Sil09, III.8], but other pairing exists and are used in cryptography
such as the Tate-Lichtenbaum pairings.[Was08, 3.4]

1.4 Supersingularity

We have seen in theorem 1.3.8 that there are two types of elliptic curves, those such that Erps “ Zp
and those such that Erps “ 0. Similarly, we also saw in theorem 1.3.6 that they were curves whose
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endomorphism ring was an order of an imaginary field and those whose endomorphism ring was an order
of a quaternion algebra. It occurs that those separations are in fact characteristic of the same notion,
the supersingularity.

1.4.1 Group structure

Definition 1.4.1: Ordinary/Supersingular curves

Let E be an elliptic curve over K, with p “ charpKq.

• E is ordinary if Erps “ Zp

• E is supersingular if Erps “ 0

A central observation is that supersingularity is preserved by isogenies. This means that due to their group
preserving structure, for any isogeny ϕ : E Ñ F , F is supersingular if and only if E is supersingular.

Proposition 1.4.2:

Let E an elliptic curve defined over K.

• If E is supersingular, then jpEq P Fp2 .

• E is supersingular and is defined over Fpn ðñ trpπEq “ 0 mod p.

Proof of Proposition 1.4.2:

• Using theorem 1.3.8 and corollary 1.2.7, we have that

Erps “ 0 ðñ rps “ ι ˝ π2 ðñ pπ “ ι ˝ π

with ι : π2pEq – E an isomorphism, meaning that jpEq “ jpπ2pEqq and therefore that

jpEq “ j
`

π2pEq
˘

“ jpEqp
2

Thus, jpEq P Fp2 .

• We note that trpπEq is inseparable if and only if xπE inseparable if and only if pπ is inseparable, i.e.
if and only if E is supersingular. Then

– If trpπEq is inseparable, then, using corollary 1.2.7, p cannot be coprime to trpπEq. Thus,
trpπEq “ 0 mod p

– If trpπEq “ 0 mod p, then trpπEq “ rks ˝ rps “ rks ˝ pπ ˝ π, meaning that it is separable.

l 1.4.2

Proposition 1.4.2 tells us that supersingular curves are rare. Indeed, the first point gives us that they
are finitely many supersingular curves up to isomorphism and the second point gives us that they are
restricted to only a handful of possible traces. Nevertheless, those strong restrictions enable us to precisely
characterize supersingular curve in both number and group structure.
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Theorem 1.4.3: Number of supersingular curves

ˇ

ˇ

␣

j P Fp2
ˇ

ˇEj is supersingular
(
ˇ

ˇ “

Y p

12

]

`

$

&

%

2 p “ 11 mod 12
1 p “ 5, 7 mod 12
0 p “ 1 mod 12

ˇ

ˇ

␣

j P Fp
ˇ

ˇEj is supersingular
(
ˇ

ˇ “ Θp
?
pq

A full proof using Hasse invariant is given in [Sil09, IV 4.1]. The additional points of the first equation
are in fact given by jpEq “ 1728 if p “ 3 mod 4 and jpEq “ 0 if p “ 2 mod 3. Following theorem 1.1.8,
both of these curves have several additional properties.

Theorem 1.4.4: Group structure of supersingular curves

Let E be a supersingular curve defined over Fp2a. Let EpFqq be the Fq-rational points with q “ pn.

• If n is odd, then trpπEq “ 0 and
EpFqq – Zq`1

• If n is even, then

– trpπEq “ `2
?
q and

EpFqq – Z?
q´1 ˆ Z?

q´1

– trpπEq “ ´2
?
q and

EpFqq – Z?
q`1 ˆ Z?

q`1

aThis ensures that we do not consider the special twists of j “ 0 and j “ 1728.

There are different group structures when we consider p “ 2, 3 or when we look at the special twists of
j “ 1728 and j “ 0. See [AAM18, MVO91] for a complete list and proof. Supersingular curves and
isogenies can be represented as graphs.

Definition 1.4.5: Supersingular isogeny graphs

Given p and l two prime number. We define the ℓ-th supersingular isogeny graphs Gℓp as a
graph with

• vertices corresponding to the supersingular j-invariant in F2
p.

• edges corresponding to isogenies of degree ℓ up to isomorphism.

Following theorem 1.3.8, we have that Gℓp are ℓ`1-regular graph and are in fact Ramanujan graphs [Piz90].
Those graphs have many applications in theoretical computer science, as expander graphs, thanks to their
pseudo-randomness properties.

1.4.2 Deuring correspondence

Now that we have properly defined supersingularity, we now go back to endomorphism ring and see that
supersingularity is intrinsically linked with quaternions. In fact, Deuring proved in [Deu41] that both
supersingular curves and their isogenies were equivalent to maximal order and linking integral ideals of
quaternion algebras.

20



Figure 1.2: Representation of G2
109, G3

109 and G5
109

Theorem 1.4.6: [Voi21, Theorem 42.1.9]

Let E be a supersingular curve and let OE – EndpEq be the corresponding order of a quaternion
algebra Bp,8. Then:

OE is a maximal order of Bp,8

with Bp,8 given by b2 “ ´p and a “

$

&

%

´1 p “ 3 mod 4
´2 p “ 5 mod 8
´q p “ 1 mod 8

with q a prime such that
´

´q
p

¯

“ ´1.

Example 1.4.7: Endomorphism ring of jpEq “ 1728

Let p “ 3 mod 4, then the curve E1728 is supersingular and its endomorphism ring correspond to
the maximal order O1728:

O1728 “ Z ` iZ `
i` j

2
Z `

1 ` ij

2
Z

with i : px, yq Ñ p´x,
?

´1yq and j “ π the Frobenius endomorphism.

The algebra Bp,8 is unique up to isomorphism. We can thus see supersingular curves as maximal orders
of Bp,8. We now need an oriented algebraic object that links two maximum order of Bp,8, similarly to
what isogenies do. This object is the notion of integral ideals.

Definition 1.4.8: Integral ideals

Let Bp,8 be a quaternion algebra. Let a1, ¨ ¨ ¨ , a4 P Bp,8 be linearly independent elements.
I “ xa1, ¨ ¨ ¨ , a4y is a fractional ideal.

• the norm of I:
npIq “ gcd

´

␣

npαq
ˇ

ˇα P I
(

¯
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• The left/right order of I:

OLpIq “
␣

α P Bp,8

ˇ

ˇαI Ď I
(

ORpIq “
␣

α P Bp,8

ˇ

ˇIα Ď I
(

I is denoted as an
`

OLpIq,ORpIq
˘

-ideal

• We say that I is integral if I Ď OLpIq.

We see that order of Bp,8 are just integral ideals that hold the unit element, i.e. 1 P I. Integral rings
links maximal orders using the following proposition

Proposition 1.4.9

Let I, J be two integral ideals.

• Both OLpIq and ORpIq are maximal orders.

•
OLpIJq “ OLpIq and ORpIJq “ ORpJq

•
OLpIq “ ORpIq and ORpIq “ OLpIq

The proof of the first point can be found in [Voi21, 10.4.2], while the others points are straightforward
consequences of the definition.
Coming back to our elliptic curves, we can go from integral ideals to isogenies and reversely using the
following tools.

Definition 1.4.10:

• Let ϕ : E Ñ F be an isogeny between two supersingular curves. Let OE and OF be the
maximal orders of Bp,8 corresponding to EndpEq and EndpF q. The kernel ideal of ϕ is
defined as

Iϕ “

!

α P OE

ˇ

ˇ

ˇ
αpkerpϕqq “ 0

)

• Conversely, given I an pOE ,OF q-ideal, it induces an isogeny ϕI : E Ñ F given by

kerϕI “ ErIs “

!

P P E
ˇ

ˇ

ˇ
αpP q “ 0 @α P I

)

In both cases, we have that, up to isomorphism, IϕI “ I and ϕIϕ “ ϕ. Deuring showed in [Deu41]4 that
this transformation induced a contravariant equivalence.

4See [Voi21, section 42.2 & 42.3] for a detailed proof.
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supersingular j-invariants over Fp2 maximal orders in Bp,8

E OE

ϕ ˝ ψ IψIϕ
degpϕq npIϕq

pϕ Iϕ
ψ˚ϕ rIψs˚Iϕ “ 1

npIψq
IψpIψ X Iϕq

γ P EndpEq OEγ

Furthermore, a property that we will often use is the fact that for any ϕ : E Ñ F an isogeny such that
ϕ “ ρ ˝ τ with q “ deg τ coprime to deg ρ, then as kerpτq “ kerpϕq X Erqs, we get that

Iτ “ Iϕ ` OEq

This overview of the Deuring correspondence concludes this chapter. Among the important fields of
elliptic curves that we did not discuss is the notion of Complex Multiplication (CM). For the interested,
a good reference is [Sil94, chapter 2]. CM and volcanology is the basis of an important part of Isogeny
Based Cryptography, based on the group action of the endomorphism ring over Gℓp. See for example
[RS06, CLM`18, BKV19, ...]. Speaking of cryptography, to manipulate all theses mathematical objects,
we need efficient algorithms which is the subject of our next chapter.

23



Chapter 2

Toolbox: isogeny representations

Thanks to the previous chapter, we are now familiar with the mathematical properties of isogenies, but
we omitted their algorithmic aspects. Indeed, as we desire to design isogeny based cryptosystems, we
need standard tools and algorithms. This necessity is further accentuated by the multiple representations
of isogenies that we saw in chapter 1, as separable isogenies can be represented up to isomorphism as
rational maps (lemma 1.2.3), kernels (theorem 1.2.10), matrices (corollary 1.3.9) or as ideals (section
1.4.2). However, before delving into the intricacies of these representations, it is essential to establish a
clear definition of what we mean by the term ”representation.”

Definition 2.0.1: Efficient isogeny representation

Let ϕ : E Ñ E1 be an isogeny defined over Fq. An efficient representation of ϕ is given by a
couple pD,Aq with

• D some data of size poly
`

logpdegpϕqq, logpqq
˘

that define uniquely the isogeny ϕ.

• A an universal algorithm independent of ϕ that, on input P returns ϕpP q with P P EpFqkq

in poly
`

k logpqq, logpdeg ϕq
˘

.

An efficient representation that can just compute points P of order coprime to N is called an
N-efficient representation.

Examples of standard efficient isogeny representation are:

• π : E Ñ Eppq the Frobenius morphism as given by its rational maps.

• rns : E Ñ E all scalar maps with n P Z using, for example, Montgomery method [HM21, section
3.3].

Both of theses efficient representations are based on rational maps, but this does not scale to all isogenies
as following lemma 1.2.3, the canonical representation of a separable isogeny needs O

`

degpϕq logpqq
˘

space, which is not in line with definition 2.0.1. In this chapter, we will discuss three different efficient
isogeny representations.

• The kernel representation, arguably the most widely used in Isogeny-Based Cryptography due to
its compactness.

• The ideal representation, that is inherited from the Deuring correspondence1.

1and more generally, from complex multiplication, but all our scheme will be based over quaternion algebras.
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• The HD representation, that is based on matrices and on higher-dimensional isogenies.

2.1 Kernel representation

The first and arguably main representation of isogenies that is used in cryptography is the kernel rep-
resentation. It makes full usage of theorem 1.2.8. The idea is to represent an isogeny ϕ : E Ñ E1 of
degree d as a point K P Erds such that xKy “ kerpϕq. To compute ϕpP q, we just use Vélu’s formulas
but this method is not an effective representation of ϕ as Vélu’s formulas are in Opdeg ϕq and not in
O
`

logpdeg ϕq
˘

. The trick is to use corollary 1.2.9. Instead of using Vélu’s formulas once, it is far more
efficient to use Vélu’s formulas over the decomposition of ϕ “ ⃝m

i“1ϕi with ϕi isogenies of degree pi such
that deg ϕ “

śm
i“1 pi. This can be done using the following algorithm.

Algorithm 1 KernelToIsogeny

Input: E the domain curve, K a generator of kerpϕq and d “
śm
i“1 pi the degree of ϕ.

Output: ϕ the isogeny, F the codomain of ϕ.

1: Set E0 “ E, K0 “ K
2: For j “ 1 to m:
3: ϕj , E

j ÐÝ Vélu’s formulas
`

Ej´1, rd{
ś

iąj pisK
j´1, pj

˘

4: Kj ÐÝ ϕjpK
j´1q

5: return ⃝m
i“1ϕj , Em.

⃝m
i“1ϕj is a slight abuse of notation, as it does not compute the composition of all ϕi which would be

a wasteful operation. Instead, it sends all distinct ϕi separately that are then applied sequentially when
evaluating.
Let degpϕq “ d be B-smooth, meaning that all prime factors of d are smaller than B, then Kernel-
ToIsogeny returns an evaluation of ϕ that is in OplogBpdqBq “ O

`

B logpdq logpBq
˘

field operations2.

This induces that if d is Õplogpdqq smooth, then KernelToIsogeny is an efficient evaluation algorithm.
We can thus define the kernel representation as such.

Definition 2.1.1: Kernel representation

Let ϕ : E Ñ E1 be a cyclica isogeny of smooth degree d. Its kernel representation consists in:

• K P Erds such that xKy “ kerpϕq.

• The KernelToIsogeny algorithm.

ai.e. its kernel is a cyclic group.

It is important to say that the algorithm KernelToIsogeny that we presented here is by no means
optimal, and many acceleration mechanisms have been developed.

1. [FJP11, section 4.2.2] proposed to use computational strategy based on discrete equilateral triangle
to not perform wasteful multiplication and additions.

2. [BFLS20] proposed
?
élu, a speedup that enabled computation of the Vélu’s formulas in Õp

?
ℓq.

Due to some hidden constant, this speed-up is only significant for primes greater than 100.

2Note that this computation does not consider the computational cost of adding and multiplying over elliptic curves.
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3. Finally, other interesting speedup method consists in using other parameterization of elliptical
curves, such as Montgomery curves [OM21].

Using kernel representation, we can thus easily compute smooth isogenies between two curves. On the
contrary, finding an isogeny between two curves is believed to be hard. This gap induces the central
problems in Isogeny Based Cryptography. We give here its restriction to supersingular curves.

Problem 2.1.2: Isogeny walk problem

Given E, E1 two supersingular curves, find ϕ : E Ñ E1 an isogeny of smooth degree.

The term walk comes from the fact that one can see an isogeny of degree ℓα as a walk over the graph Gℓp.
In some cases, the degree of the linking isogeny is known. This induces the following problem.

Problem 2.1.3: Explicit isogeny problem

Given E, E1 two curves isogenenous of degree d, compute ϕ : E Ñ E1 of degree d.

The best known generic algorithm [DFHPS16] that solve explicit isogeny problem is in Opd2q. A question
nevertheless remains. How can we ensure that our torsion points and thus our kernels are available in
Fp2k , with k “ Õplog pq a small power?

2.1.1 Accessible torsion points

To answer that question, we will make use of the supersingularity and more especially of the group
structure of EpFp2q, as given by theorem 1.4.4. The following point is one of the reason we often use
supersingular curves when working in Isogenies Based Cryptography.
First, we have that all supersingular curves E are defined over Fp2 . Thus, if we assume that trpπEq “ 2

?
p,

then via theorem 1.4.4 we have that

EpFp2q “ Z2
p´1 “ Erp´ 1s

Furthermore, using proposition 1.3.4, we have that the quadratic twist of E, Ed is such that trpπEq “

´2
?
p and thus that

EdpFp2q “ Z2
p`1 “ Erp` 1s

Then, by using theorem 1.1.8, we can map the points in Edrp` 1s to points in EpFp4q in such a way that
the x-coordinate remains in Fp2 . This therefore means that we have the guaranty that all torsion points
whose order divide p2 ´ 1 are easy to access. This ease of access is extremely valuable in Cryptography
as we can choose prime number p such that the desired torsion points are divisors of p2 ´ 1 and thus
ensure that they are easy to access. This is the basis for the following algorithm.

CanonicalTorsionBasis Using those easy to access torsion points, the CanonicalTorsionBasis ef-
ficiently computes a basis xP,Qy “ ErN s. To do so, it simply samples points at random in EpFp2q or
EdpFp2q. To ensure that this method is deterministic, the sampling is performed deterministically. There
exists many algorithms to find torsion basis, depending on the cases. A good example in the general case
is [MMRV09], while [ZJP`17] is very efficient for large power of 2 or 3.
Let’s now give an example to see how the kernel representation can be used in cryptography with SIDH.
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2.1.2 SIDH

Initially proposed in [FJP11], SIDH3 is an isogeny based key exchange mechanism. The main idea behind
SIDH is to use the universal property of pushforwards. Indeed, if Alice and Bob compute ϕA and ϕB two
isogenies of coprime degree with the same domain, then they can compute their respective pushforwards,
namely pϕAq˚ϕB and pϕBq˚ϕA and gain a shared secret, the codomain of both pushforwards.
Let the SIDH public parameter be as follows:

• p “ ℓeAA ℓeBB f ´ 1 a prime number with ℓA and ℓB coprime and ℓeAA « ℓeBB .

• E a supersingular curve defined over Fp2 .

• xPA, QAy a basis of E0rℓeAA s

• xPB , QBy a basis of E0rℓeBB s.

SIDH

Alicepppq Bobpppq

sA Ð$ Zℓ
eA
A

sB Ð$ Zℓ
eB
B

RA Ð PA ` rsAsQA RB Ð PB ` rsBsQB

ϕA, EA Ð KernelToIsogenypE,RA, ℓ
eA
A q ϕB , EB Ð KernelToIsogenypE,RB , ℓ

eB
B q

SA Ð ϕApPBq, TA Ð ϕApQBq SB Ð ϕBpPAq, TB Ð ϕBpQAq

EA, SA, TA

EB , SB , TB

UA Ð SB ` rsAsTB UB Ð SA ` rsBsTA

ψA, EK Ð KernelToIsogenypEB , UA, ℓ
eA
A q ψB , EK Ð KernelToIsogenypE,UB , ℓ

eB
B q

K Ð KDF
`

jpEKq
˘

K Ð KDF
`

jpEKq
˘

This protocol is correct because

kerψA “ xϕBpPAq ` rsAsϕBpQAqy “ xϕBpPA ` rsAsQAqy “ ϕB
`

kerpϕAq
˘

“ ker
`

rϕBs˚ϕA
˘

kerψB “ xϕApPBq ` rsBsϕApQBqy “ xϕApPB ` rsBsQBqy “ ϕA
`

kerpϕBq
˘

“ ker
`

rϕAs˚ϕB
˘

Therefore, due to definition 1.2.13, the following diagram is commutative

E EB

EA EK

//ϕB

//ψB
��

ϕA

��

ψA

SIDH has many advantages. It is simple to understand, easy to implement and has very small key size.
Its key security reduces to the following variant of the explicit isogeny problem.

3Supersingular Isogeny Diffie-Hellman
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Problem 2.1.4: Supersingular isogeny problem with torsion point information

Let ϕ : E Ñ E1 be an isogeny of degree d between supersingular curves and let xP,Qy “ ErN s

with N coprime to d.
Given P,Q, ϕpP q, ϕpQq, retrieve ϕ.

It is important for N and d to be coprime, as otherwise, we would trivially gain partial knowledge of
the kernel of ϕ. For example, if we know ϕpErdsq, then as ϕpErdsq “ ker pϕ, we can compute pϕ, evaluate
pϕpE1rdsq and thus retrieve kerpϕq.
Since SIDH was the underlying architecture basis for SIKE, a candidate to the NIST Post-Quantum
cryptography standardization effort, its security analysis was widely studied. Some important works are
[GPST16, FP21] that proposed adaptative attacks with one dishonest party. [Pet17] proposed the idea
of lollipop attacks that is efficient over unbalanced SIDH, meaning that ℓEAA " ℓEBB . Those attacks were
further improved in [dQKL`20]. We will detail them more precisely in chapter 4. Finally, it was proven
in [CD23, MMP`23, Rob22a] that supersingular isogeny problem with torsion point information was easy
using higher dimension isogenies and high dimension representation of isogenies, as we shall see in section
2.3. Countermeasures have been proposed [FMP23, BF23, ...] but they all come with a huge overhead.

2.2 Ideal representation

Using the Deuring correspondence, we know that an isogeny can be represented as an integral ideal of
Bp,8 linking maximal orders of Bp,8. Finding which order correspond to which curve is believed to be
hard. This problem is in fact a central problem in Isogeny Based Cryptography.

Problem 2.2.1: Endomorphism problem

Let E be any supersingular curve defined over Fp2 , find a nontriviala endomorphism of E.

ai.e. not α P Z

It was proven in [PW23] that the endomorphism problem was equivalent to the problem of retrieving a
full basis of OE . It was also proven in [Wes22] that the endomorphism problem and the isogeny walk
problem are equivalent.

2.2.1 Endomorphism basis

An important point to see is that if we have an efficient representation for α1, ¨ ¨ ¨ , α4 a basis of OE , then
we can construct an efficient representation for all γ P EndpEq, as γ “

ř4
i“1raisαi. This central property

is the motivation for the notion of evaluation basis.

Definition 2.2.2: Evaluation Basis

Let OE be a maximal order of Bp,8, we define an evaluation basis of OE , denoted OE as:

• A basis α1, ¨ ¨ ¨ , α4 such that

OE “ α1Z ` α2Z ` α3Z ` α4Z

• An isomorphism δ : EndpEq – OE such that any δ´1pαiq has an efficient evaluation.

An evaluation basis that can just compute points P of order coprime to N is called an N-
evaluation basis.
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Apart from O0 and O1728, the latter given in example 1.4.7, finding ex nihilo an evaluation basis over a
curve E is believed to be hard. The best method to compute evaluation basis is to use isogenies.

PushEndRing

We present here the PushEndRing, as given in [DLRW23, Algorithm 8]. If we know OE an evaluation
basis of EndpEq together with an isogeny φ : E Ñ F and its kernel ideal Iφ, we can then construct an
evaluation basis of EndpF q. The main idea is to see that for any θ P EndpF q, pφ ˝ θ ˝ φ P EndpEq. This
makes the map

ι : EndpF q Ñ Bp,8

ιpθq Ñ
1

d
δppφ ˝ θ ˝ φq

an injective morphism with ι
`

EndpF q
˘

“ 1{dIφIφ “ OF .

Algorithm 2 PushEndRing

Input: OE “
`

tαiu
4
i“1, δ

˘

an evaluation basis of EndpEq, φ : E Ñ F an isogeny of degree d with
an efficient representation together with its ideal Iφ.
Output: OF a d-representation basis of EndpF q.

1: Find tβiu
4
i“1 the basis of the order OF “ 1{dIφIφ.

2: Find tci,ju
4
i,j“1 such that dβi “

ř4
j“1 ci,jαj

3: Set ϵ : OF Ñ EndpF q as βi Ñ 1{d
ř4
j“1rci,jsppφ ˝ δpαjq ˝ φq

4: return OF “
`

tβiu
4
i“1, ϵ

´1
˘

It is thus possible, knowing an isogeny between E1728 and E to find an evaluation basis of E. This
method is useful and efficient, but what to do if we have to evaluate a point whose order is not coprime
to d and how can we find both an isogeny and its ideal?
To remedy the first point, we just have to find two isogenies of coprime degree. There are many methods
to obtain this result that we can engulf as DoublePath algorithms.

DoublePath

The goal of the a DoublePath algorithm is to use the knowledge of OE the endomorphism ring structure
of E to construct two coprime isogenies ϕ, ψ : E Ñ F together with their ideals. We give here a
presentation of the DoublePath as presented in [DLRW23, Algorithm 1].4 To do so, it uses both
pushforwards and the factorization of isogenies, given by corollary 1.2.9.
Take θ P EndpEq an endomorphism of order A2B2 with A and B both smooth and coprime number.
Then, we can write θ as

θ “ ρ ˝ ρ1 ˝ τ 1 ˝ τ

with degpρq “ degpρ1q “ B and degpτq “ degpτ 1q “ A. Then, we consider the following commutative

4But it is not the only one, as other variants exists, that uses for example the KLPT.
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diagram

E1

E F E1

E2

τ

pρ1

ρ˚
pτ 1

pτ 1
˚ρ

pτ 1

ρ

and define ϕ “ pρ˚
pτ 1q ˝ τ and ψ “ ppτ 1

˚ρq ˝ pρ1, two isogenies between E and F of respective degree A2 and
B2. Furthermore, by factoring θ and by using KernelToIdeal we can evaluate all these functions and
pushforwards.

2.2.2 Ideals representation

We now answer our second point and see that provided OE an evaluation basis of EndpEq, then we can
easily find the representing ideal of ϕ : E Ñ F , provided that its degree is smooth. This is done using
the KernelToIdeal algorithm.

KernelToIdeal

We present here KernelToIdeal as given by [DLRW23, Algorithm 9]. The main idea is to construct an
endomorphism γ P EndpEq such that γ factors through ϕ, meaning that γpKq “ 0, with xKy “ kerpϕq.
To do so, we simply find a linear combination between the component of the evaluation basis tβiu

4
i“1

such that it maps K to 0.

Algorithm 3 KernelToIdeal

Input: OE an N -evaluation basis over E and K the kernel of an isogeny ϕ of smooth degree d
coprime to N
Output: Iϕ the ideal such that ErIϕs “ xP y

1: For each basis component βi, compute Qi Ð δpβiqpP q

2: Find i ‰ j such that xQi, Qjy “ Erds Ź use discrete log
3: Take k ‰ i, j and find a, b such that Qk “ aQi ` bQj . Ź also use discrete log
4: Define γ “ βk ´ aβi ´ bβj
5: return OEγ ` OEd

Note that the smoothness is required to efficiently perform discrete logarithms. We thus retrieve the
representing ideal for smooth degree isogenies. This can be used in conjunction with the kernel repre-
sentation to evaluate the isogeny described by an ideal J without any smoothness requirement on npJq

using the EvalTorsion algorithm.

EvalTorsion

We present here the EvalTorsion as given in [DLRW23, Algorithm 11]. Assume knowledge of OF an
evaluation basis over F and two isogenies ρ1 : F Ñ E and ρ2 : F Ñ E1 of norm d1 and d2 with efficient
representations together with their respective ideals I1 and I2. Consider J an pOE ,OE1 q-ideal of norm
N coprime to d1 and d2. Finally, let P be any point in E. We are thus in the following diagram
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F OF

ðñ

E E1 OE OE1

ρ1 ρ2

ϕJ

IJ

I1 I2

We then have that I1JI2 describe γ “ pρ2 ˝ ϕJ ˝ ρ1 an endomorphism of F . We thus get the following
equality

ϕJpP q “ rpd1d2q´1sρ2 ˝ γ ˝ pρ1pP q mod N

Algorithm 4 EvalTorsion

Input: OF an evaluation basis over F , ρ1 : F Ñ E of degree d1, ρ2 : F Ñ E1 of degree d2, both
with efficient representations. J an pOE ,OE1 q-ideal of norm N coprime to d1 and d2. P P E
Output: ϕJpP q

1: Compute an efficient representation of pρ1 Ź Doable with all representation in this thesis.
2: Find γ such that OF γ “ I1JI2
3: Compute R “ ρ2 ˝ δ´1pγq ˝ pρ1pP q

4: Compute µ “ pd1d2q´1 mod N
5: return rµsR.

Using EvalTorsion, we can finally define the ideal representation of an isogeny.

Definition 2.2.3: Ideal representation

Let ϕ : E Ñ E1 be an isogeny of degree d. Its ideal representation consists in:

• Iϕ the pOE ,OE1 q-ideal corresponding to ϕ, with OF an evaluation basis of EndpF q, ρ1 :
F Ñ E and ρ2 : F Ñ E1 two isogenies with efficient representations of respective degree d1,
d2 and with corresponding ideals I1 and I2.

• The EvalTorsion algorithm.

We have that an ideal representation is an d1d2-efficient representation.

2.2.3 KLPT

To conclude this section, we will present several algorithms that are linked to the KLPT algorithm.
Most of the following is taken from Leroux’s thesis [Ler22]. To simplify, the KLPT is an algorithm that
transforms an pOE ,OF q-ideal I into another pOE ,OF q-ideal J whose norm is smooth. The KLPT utilize
the following algorithms.

FullRepresentInteger

Given in [Ler22, Algorithm 4], the FullRepresentInteger take as input a number N ą p and return
γ P O1728 an endomorphism of E1728 such that γγ “ N . To do so, it uses a modification of the
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Cornacchia algorithm5, named the CornacchiaExtended [Ler22, Algorithm 1] that does not require
knowledge of the factorization of N but at the cost of some bias over the distributions of its answers.
The FullRepresentInteger has the following properties.

Lemma 2.2.4: [Ler22, Lemma 3.1.4] + [FLLW22, section 6]

• FullRepresentInteger runs in polyplogpNqq.

• Due toCornacchiaExtended, we can only output Θp1{logpNqq of all possible endomorphisms
of norm N .

• Under plausible heuristic assumptions, the distribution of γ as an output of FullRepre-
sentInteger is computationally indistinguishable from the uniform distribution among all
endomorphism of E1728 of degree N .

FullRepresentInteger is extremely useful when combined with the DoublePath as they can be used
to compute evaluation basis over random curves E.

Proposition 2.2.5: [DLRW23, section 5.2]

Under plausible heuristic assumptions and provided A2 » B2 » p, then the following distributions
are computationally indistinguishable.

• F the codomain of ϕ and ψ outputted by DoublePathpγ,A,Bq with γ given by FullRep-
resentIntegerpA2B2q.

• F a random curve sampled uniformly among all supersingular curves.

RandomEquivalentIdeal

Given in [Ler22, Algorithm 6], the RandomEquivalentIdeal takes as input an pOE ,OF q-ideal I and
returns J another pOE ,OF q-ideal such that npJq is a “small” prime. It is done by applying the LLL

algorithm ([LLL82]) over the relative norm nIpαq “
npαq

npIq
to find a Minkowski reduced basis tβiu

4
i“1 of

OLpIq. It then samples at random tciu
4
i“1 P r´b, bs, check primality and return I

ř

ciβi
npIq

.

The RandomEquivalentIdeal has the following properties.

Lemma 2.2.6: [Ler22, Lemma 3.2.3 & 3.2.4]

• As ci are sample randomly, the output of RandomEquivalentIdeal has an uniform distri-
bution among all small linking ideals.

• RandomEquivalentIdeal runs in poly pnpIqpCq with C a bound depending on the basis
of OE .

• Given J outputted by RandomEquivalentIdeal. Then, under probable heuristic assump-
tions and with probability greater that 1 ´ 2´ϵ,

c

p

log p
ϵ´1 ď npJq ď

a

p logppqϵ

5Defined in [Cor07], the Cornacchia algorithm solves efficiently equations of the form x2 ` qy2 “ N with x, y P Z
provided that we know the factorisation of N .
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meaning that RandomEquivalentIdeal outputs inside this range with negligible proba-
bility provided ϵ “

a

logppq.

KLPT

By combining RandomEquivalentIdeal together with FullRepresentInteger and with the addition
of a third algorithm named the FullStrongApproximation, get the KLPT. [Ler22, Algorithm 7]. The
KLPT outputs O1728-left ideal J whose norm has the desired divisors. It can therefore be used to compute
ideals with smooth norms. This choice of smoothness comes at the cost of having a big norm. In general,
one gets that npJq “ Opp7{2q, but tradeoffs exists. For example, [PS18] shortened the length of the
isogeny to Opp5{2q at the cost of a greater running time, while [FLLW22] lifted the necessity to have a
left O1728-ideal, at the cost of a norm in Opp11{2q.

2.3 High dimension representation

To put it simply, the idea behind the high dimensional representation lies in embedding isogenies be-
tween elliptic curves into higher dimension isogenies. The idea of higher dimensional representation was
proposed in [Rob22b] and is an adaptation of [MMP`23, Rob22a] attacks on SIDH. HD representation
is based on something named the Kani’s Lemma.

2.3.1 Kani’s Lemma

Before explaining Kani’s Lemma, we need to give a bit of background on high dimensional abelian
varieties. Properly explaining the inner working of abelian varieties would easily require another dedicated
chapter, so we will just introduce the main differences between elliptic curves and abelian varieties that
will be useful to us. For the interested, we recommend the reading of [Mil86].
Let V be a n-dimensional abelian variety defined over Fp. Note that definition 1.2.1 of isogeny holds.
The same goes for Theorem 1.2.8 that can be generalized using quotient varieties. Then,

• V rN s – Z2n
N for N coprime to p. (which is in line with elliptic curves as they are 1 dimensional vari-

eties.) To remain consistent with isogenies over elliptic curves, we define the degree of a separable6

isogeny ϕ as n
a

| kerpϕq|. Thus, degprmsq “ m2 for any dimension.

• Any isogeny ϕ : V Ñ W induces via the pullback ϕ˚ a dual isogeny pϕ : W_ Ñ V _ with V _ “

Pic0pV q the dual variety. The separation between V and V _ is important, as there are no
equivalents to Abel-Jacobi map, meaning that V and V _ are usually not isomorphic. One then
define an isogeny λ : V Ñ V _ as a polarization and we write such system pV, λq.

• If λ is an isomorphism, then we say that pV, λq is a principally polarized variety. Given pV, λq

and pW,µq two principally oriented varieties, we say that ϕ : V Ñ W is a polarized isogeny if

ϕ_ ˝ µ ˝ ϕ “ rdegpϕqsλ

6Separability over higher dimension isogeny ϕ : V Ñ W is linked with the notion of separability of the field extension
K(V) over K(W). This definition agrees with our definition in dim 1 1.2.4 but is heavily rooted in algebraic geometry.
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We are then in the following diagram

V W

V _ W_

ϕ

ϕ_

λ µ

and therefore define the polarized dual of ϕ, denoted rϕ as µ ˝ ϕ_ ˝ λ´1. This definition is then in
line with the definition 1.2.11 and holds similar properties as in proposition 1.2.12.

As we will from now on only work with principally polarized variety, we will omit the notation of polar-
ization.

Lemma 2.3.1: [Kan97] Kani’s Lemma

Let A,B,A1, B1 be principally polarized abelian varieties with f, g, f 1 and g1 polarized separable
isogenies such that the following diagram is commutative:

A B

A1 B1

//f

��

g

��

g1

//f 1

Then, the following map
F : B ˆA1 Ñ AˆB1

ˆ

f̃ ´g̃
g1 f 1

˙

is a polarised separable isogeny with D “ degpF q “ degpfq ` degpgq “ D1 `D2 and such that

kerpF q “

!

`

fpP q,´gpP q
˘

ˇ

ˇ

ˇ
P P ArDs

)

“

!

`

rg1pP q, rf 1pP q
˘

ˇ

ˇ

ˇ
P P B1rDs

)

kerp rF q “

!

`

f̃pP q, g1pP q
˘

ˇ

ˇ

ˇ
P P BrDs

)

“

!

`

´ g̃pP q, f 1pP q
˘

ˇ

ˇ

ˇ
P P A1rDs

)

We recommend the proof in [Rob22a, section 3] that is both complete and easy to understand.
Although we presented here the Kani’s Lemma under its canonical form, we can also use is as follows.

Corollary 2.3.2:

1. If kerpfq X kerpgq “ Ø, then consider h “ g ˝ rf . We can also write kerpF q as

!

`

rD1spP q, hpP q
˘

ˇ

ˇ

ˇ
P P BrDs

)

“

!

`

h̃pP q, rD2spP q
˘

ˇ

ˇ

ˇ
P P A1rDs

)
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A B

A1 B1

//f

��

g

��

h

��

g1

//h1

2. Given D “ d1d2, then we can write F “ F2 ˝F1 with degF1 “ d1 and degF2 “ d2 such that

A1 ˆB AˆB1

V

//F

??
F1

__
F̃2

kerpF1q “ kerpF qrd1s “

!

`

fpP q, gpP q
˘

ˇ

ˇ

ˇ
P P Ard1s

)

kerpĂF2q “ kerp rF qrd2s “

!

`

rfpP q, g1pP q
˘

ˇ

ˇ

ˇ
P P Brd2s

)

2.3.2 Computing with Kani’s Lemma

Let us now explain how we can use Kani’s Lemma to represent isogenies.

HDKernelToIsogeny

It is apparent that to efficiently uses Kani’s isogeny, we need to use a kernel representation for high-
dimensional isogenies. We will use the representation given by the evaluation algorithm [Rob10, Algorithm
7.2.4]. This algorithm is based on [Rob10, Algorithm 7.3.2], an analog of KernelToIsogeny for high-
dimensional isogenies that we will therefore name HDKernelToIsogeny. We take this algorithm in
a black box manner, as it relies on θ-functions. For the interested, see [Rob10, Part I] together with
[Mum66].
Similarly to kernel representation, the HDKernelToIsogeny algorithm enables efficient representation
of HD isogenies of smooth degree d. More specifically, if ϕ is an isogeny of dimension n that is B-smooth,
then HDKernelToIsogeny would return an evaluation in O plogpdqBn logpBqq. Likewise to [FJP11,
section 4.2.2], we can also use optimized strategies to not perform wasteful multiplication. See [DLRW23,
section F.1] for more details.

EvalKani

To evaluate isogenies using Kani’s Lemma, we will construct EvalKani. It uses Kani together with the
Zahrin’s trick to evaluate an isogeny φ : E1 Ñ E2 of degree d over a point R P E when given P,Q, φpP q

and φpQq with xP,Qy “ E1rN s and N smooth, coprime with d and such that N ě
?
d. Let N1, N2 be

divisors of N . We will use isogenies in dimension 2, 4 or 8 depending on the value of a “ N1N2 ´ d, with
N1 and N2 divisors of N . There are three cases:

1. If a “ a21, then we use Kani in dimension 2 over ra1s and φ.

2. If a “ a21 ` a22 (which occurs for a “ 3 mod 4 prime) then we use Kani in dimension 4 over the
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following functions

αi :“

ˆ

a1 ´a2
a2 a1

˙

P EndpE2
i q with degpαq “

4
ÿ

i“1

a2i ; Σ :“ Diagpφ,φq

3. Otherwise a “ a21 ` a22 ` a23 ` a24 and we are force to use Kani in dimension 8 over the following
functions

αi :“

¨

˚

˚

˝

a1 ´a2 ´a3 ´a4
a2 a1 a4 ´a3
a3 ´a4 a1 a2
a4 a3 ´a2 a1

˛

‹

‹

‚

P EndpE4
i q with degpαq “

4
ÿ

i“1

a2i ; Σ :“ Diagpφ,φ, φ, φq

1q 2q 3q

E1 E2

E1 E2

E2
1 E2

2

E2
1 E2

2

E4
1 E4

2

E4
1 E4

2

//φ

��

ra1s

��

ra1s

//φ

//Σ

��

α1

��

α2

//Σ

//Σ

��

α1

��

α2

//Σ

In each case, we construct F , the Kani’s isogeny of degree N1N2. A good choice is of N1 and N2 is thus
important as it may enable us to work in dimension 4 or in dimension 2, which significantly improve the
efficiency of EvalKani.
To evaluate F , we split F into F “ F2 ˝F1 with degFi “ Ni using the second point of corollary 2.3.2. As
we already know a basis of ErN s, together with its image by ϕ, we also have basis of ErN1s and ErN2s

together their images through φ. We can thus construct a basis of E1rN skdenoted tPi,ju0ďi,jď2,k with j
the position and i the choice of P or Q. Using corollary 2.3.2, we can compute B1 and B2, the respective
basis of the kernel of F1 and ĂF2. Using HDKernelToIsogeny, we can therefore retrieve F1 and ĂF2.
We then have to compute F2. There are 2 methods, depending on the order of R, the point we want to
evaluate.

1. If R is not smooth, then we have to compute F2. To do so, we simply compute kerpF2q “

ĂF2

`

0k ˆ E2rN2sk
˘

. As we know a basis of E2rN2s using ϕpErN sq, we can find B3 a basis of kerpF2q

by evaluating ĂF2 at 2k points. We then make a third call to HDKernelToIsogeny to retrieve F2.
It then suffices to write R in one of the components of F to retrieve φpRq.

2. If R is smooth, then we can do without computing F2. To do so, let r be the degree of R. We first
use CanonicalTorsionBasis to find a basis of E1rrs and E2rrs. We then construct B0 a basis of

pE1 ˆ E2qkrrs and evaluate that basis through both F1 and ĂF2 (meaning 4k evaluations). Using
discrete logarithms, we compute the matrix M P M2kpZrq such that

F1pB0q “ MĂF2pB0q

knowing that matrix enables us to compute any values of R as for any vector v P pE1 ˆ E2qkrrs

F pvq “ F2 ˝ F1pvq “ F2 ˝ MĂF2pvq “ MĂF2 ˝ F2pvq “ rd2sMv

We then evaluate φpRq using F with the same method as in the first point. More details on this
method are available in [DLRW23, section F.3].
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We only write the pseudocode for dimension 8. It is easy to modify the algorithm for dimension 4
and 2, as the main difference is that instead of using the EHR algorithm7, we use Cornacchia. We
also here present the case where we compute 3 HD isogenies. Finally, we define a subroutine, called
ConstructKani that construct the Kani’s isogeny.
Note that EvalKani works perfectly if we set N2 “ 1. In that case, we will compute F is one go.
Nevertheless, it is always a good idea to split the Kani’s isogenies because computing F1 and ĂF2 can be
parallelized, which significantly speed up the computations.

Algorithm 5 ConstructKani

Input: φ : E1 Ñ E2 an isogeny of degree d with N1, N2 divisors of N . xP,Qy “ E1rN s with
S “ φpP q, T “ φpQq.
Output: F the Kani’s isogeny

1: k1 Ð N{N1, k2 Ð N{N2

2: a1, a2, a3, a4 Ð EHRpN1N2 ´ dq Ź Use Cornacchiap1, N1N2 ´ dq if dimension 4
3: Construct α and rα
4: Compute tPi,ju0ďi,jď2,4 a basis of E4

1 rN s Ź Using P,Q
5: B1 Ð

␣`

rk1sΣpPi,jq, r´k1sαpPi,jq
˘(

0ďi,jď2,4
Ź ΣpPi,jq computed using S, T

6: B2 Ð
␣`

r´k2sα̃pPi,jq, rk2sΣpPi,jq
˘(

0ďi,jď2,4

7: F1 Ð HDKernelToIsogenypB1q

8: ĂF2 Ð HDKernelToIsogenypB2q

9: B3 ÐÝ

!

rF2

`

04 ˆ rk2sΣpPi,jq
˘

)

0ďi,jď2,4

10: F2 ÐÝ HDKernelToIsogenypB3q

11: return F2 ˝ F1

Algorithm 6 EvalKani

Input: φ : E1 Ñ E2 an isogeny of degree d with N1, N2 divisors of N . xP,Qy “ E1rN s with
S “ φpP q, T “ φpQq and R P E1

Output: φpRq

1: F ÐÝ ConstructKani
`

d,N1, N2, P,Q, S, T
˘

2: return
´

F p0, 0, 0, 0, R, 0, 0, 0q

¯

5

Using EvalKani, we can define the notion of high dimensional representation as follows.

Definition 2.3.3: High dimensional representation

Let ϕ : E Ñ E1 be an isogeny of degree d, its high dimensional representation consists in:

•
`

P,Q, ϕpP q, ϕpQq
˘

with xP,Qy “ ErN s, N smooth and coprime with d such that N ě
?
d.

• the EvalKani algorithm.

We see that, using HD representation, we can solve the supersingular isogeny problem with torsion point
information, provided that N is smooth. This is essentially how the attacks of [MMP`23, Rob22a] works.
More generally, HD representation enables new cryptosystems such as [BMP23, DLRW23, Mor23, ...] or

7Initially proposed in [RS86] and improved by [PT18] that efficiently solve Legendre 4 squares problem.
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our new cryptographic protocols, SQIPrime and SILBE, the subject of the following chapters.
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Chapter 3

SQIPrime: SQISignHD with highly
two addic primes

We now present SQIPrime a post-quantum digital signature scheme based on the Deuring correspondence.
Comparatively to its inspirations SQISign [FKL`20] and SQISignHD [DLRW23], SQIPrime further-
expand the use of Kani’s Lemma initially introduced in SQISignHD for verification to both key generation
and commitment. Through these modifications, it gains the following properties:

• SQIPrime uses highly two addic base prime numbers.

• All isogenies used in SQIPrime have big prime degree.

This chapter is structured as such. Section 3.1 explains the main ideas and architecture behind both
SQISign and SQISignHD. Section 3.2 details the new tools that we used in SQIPrime. Finally, section
3.3 and 3.4 give the detailed construction and security analysis of SQIPrime.

3.1 SQISign & SQISignHD

One of the main interests of isogeny based signature schemes is that they provide compact post-quantum
signatures. This property, which comes at the cost of a greater computational cost, fuelled their research.
Among the early propositions ([YAJ`17, BKV19, ...]) was GPS [GPS16] that relied on the Deuring
correspondence. Its ideas were expended and improved in [FKL`20] to create the SQISign protocol.
As of today, SQISign is the only isogeny based candidate at the NIST post-quantum cryptography
standardization effort. In 2023, [DLRW23] proposed SQISignHD, a variant utilizing HD representation
for verification.
Both SQISign and SQISignHD are in fact identification schemes, and more precisely Σ protocol based
identification schemes. They are then transformed into signatures schemes using the Fiat-Shamir trans-
form [FS86]. An identification protocol is defined as such.

Definition 3.1.1: Identification schemes

Let λ be a security parameter, an identification scheme is given by set of 3 PPTpλq algorithms
KeyGen,P,V together with a setup algorithm Setupp1λq Ñ pp the public parameters.

• KeyGenpppq Ñ psk, pkq a secret/public key pair.

• P,V are an interactive protocol such that for all psk, pkq:
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– Correctness:
P
”

Output
`

Pppp, skq ÐÑ Vppp, pkq
˘

“ 1
ı

“ 1

– Soundness: For any P , an interactive PPTpλq, then

P
”

Output
`

Pppp, pkq ÐÑ Vppp, pkq
˘

“ 1
ı

ď neglpλq

Note that the definition of an identification scheme allows for the prover to just send the secret key to
the verifier. If it is hard to retrieve sk from pk, then we would have a valid identification scheme. This
is why it is often asked for identification schemes to be zero-knowledge, which intuitively means that the
verifier V gains no information about sk when interacting with P. In this paradigm, the verifier can be
also honest or dishonest. See [Gol09, chapter 4] for a proper definition of zero-knowledge.
For signature schemes, we often define P and V using a Σ protocol. This is because Σ protocols are
easier to define while being honest verifier zero-knowledge interactive protocol, which is sufficient in
terms of security to construct using [FS86] existentially unforgeable under chosen message attacks (EU-
CCA) signature scheme in the Random Oracle Model (ROM). We define a Σ protocol that is adapted to
identification schemes as such.

Definition 3.1.2: Σ-protocols

A Σ protocol is an interactive protocol composed of pP,Vq that are decomposed in 4 sub-
algorithms Commit,Challenge,Response,Verify:

Σ protocol

Pppp, skq Vppp, pkq

sec, com Ð Commitppp, skq com

chal chal Ð Challengeppp, pk, comq

res Ð Responseppp, sk, sec, chalq res

0{1 Ð Verifyppp, pk, com, chal, resq

This protocol must ensure

• Special Soundness. There exists E a PPTpλq algorithm called the extractor such that for
any pk, if ppk, com, chal, resq and ppk, com, chal1, res1q are two accepting views for V such that
chal ‰ chal1, then Eppk, com, chal, res, chal1, res1q yields sk, a valid secret key.

• Special Honest-Verifier Zero-Knowledge (HVZK). There exists S a PPTpλq algorithm called
the simulator such that for any psk, pkq, the transcript pcom, chal, resq of the interac-
tion Pppp, skq Ø Vppp, pkq conditioned to chal is computationally indistinguishable from
Sppp, pk, chalq.

As previously touched, SQISign and SQISignHD are Σ protocol based identification schemes build upon
the Deuring correspondence (hence the acronym SQIS for Short Quaternion Identification Scheme). The
main idea behind SQISign and SQISignHD is to prove the knowledge of the endomorphism ring EndpEAq

with EA a supersingular curve. To do so, the idea is to use the fact that knowing EndpEAq enables the
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prover to find a connecting isogeny between EA and any other curve E2, provided that he also knows
EndpE2q. The idea is then to let E2 be chosen as a challenge by the verifier in such a way that the prover
can retrieve EndpE2q and respond the connecting isogeny that can be easily verified. The main difference
between SQISign and SQISignHD consist in how this connecting isogeny is computed and represented.
The respective architecture of SQISIgn and SQISignHD are given in figure 3.1.

E1728 E1 E1728 E1

EA E2 EA E2

ψ

φτ τ

ψ1

φσ

σ

ψ

τ 1

Figure 3.1: Diagrams of SQISign (left) and SQISignHD (right). The prover is in blue and the verifier is
in red. Dashed isogenies are secrets.

SQISign: To construct σ the connecting isogeny, SQISign uses a variant of the KLPT named the
SigningKLPT [FKL`20, Algo. 5]. The ideal Iσ is smooth, as its norm is a large power of 2 of size
Opp3q. To be efficiently computed, σ is represented as a composition of isogenies with rational kernel
generator. Transcribing Iσ to these kernels is done efficiently using IdealToIsogeny [FLLW22, Algo. 7]
by setting the prime p of SQISign to be such that 2ℓT |p2 ´ 1 with T 2 » p3 and T smooth. Finding such
primes is difficult and T often has prime factors in the order of 103. Those big factors significantly slow
the signing procedure, as several T isogenies have to be computed throughout IdealToIsogeny. On the
other hand, the verification of SQISign is very efficient, as it essentially consists in computing a sequence
of isogenies of degree 2ℓ from their kernels. SQISign is performed as such.

• KeyGen: Compute τ : E1728 Ñ EA together with its corresponding ideal Iτ . EA is the public key,
while τ is the secret key. EA is the domain of the response isogeny.

• Commit: The prover computes ψ : E1728 Ñ E1 together with its corresponding ideal Iψ. It gives φ
to the verifier.

• Challenge: The verifier then computes a challenge isogeny φ : E1 Ñ E2 and sends it to the prover.
E2 is the codomain for the answer isogeny.

• Response: Using its knowledge of ψ, the prover uses KernelToIdeal to compute Iφ. Then, using
the SigningKLPT and IdealToIsogeny, the prover constructs an isogeny σ : E2 Ñ E1 different
from φ ˝ ψ ˝ pτ and gives σ as a response to the verifier.

• Verify: The verifier then checks that the received isogeny is valid using KernelToIsogeny.

SQISignHD: On the other hand, SQISignHD uses the RandomEquivalentIdeal to compute σ. The
response isogeny is therefore short rOp

?
pq but not smooth. It is then given to the verifier using the HD

representation. This shift to HD isogenies considerably speeds up the signature part of SQISignHD but
shifts most of the expensive computation to the verification that has to use EvalKani. To be efficient,
SQISignHD uses “SIDH”-like prime, that are easy to find. SQISignHD is thus performed as such.

• KeyGen: Compute τ, τ 1 : E1728 Ñ EA together with its corresponding ideal Iτ . EA is the public
key, while τ is the secret key.
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• Commit: The prover computes isogenies ψ,ψ1 : E1728 Ñ E1 with DoublePath together with its
ideal Iψ and shares E1. This curve is the domain of the response.

• Challenge: The verifier computes a challenge isogeny φ : EA Ñ E2 and sends it to the prover. E2

is the codomain for the answer isogeny.

• Response: UsingRandomEquivalentIdeal, the prover constructs an isogeny σ : E1 Ñ E2 different
from φ˝τ ˝ ψ̂, evaluate it using τ 1, ψ1 and EvalTorsion and gives this evaluation of σ as a response
to the verifier.

• Verify: The verifier then checks that the received isogeny is valid using EvalKani.

3.2 New tools

Before jumping into SQIPrime, we detail two new tools that we will use to construct our variant of
SQISignHD.

1. The first tool is called KaniDoublePath, a variant of DoublePath that uses Kani’s Lemma to
sample supersingular curves at random such that we can compute their endomorphism ring using
isogenies of big prime degree. This algorithm is a slight modification of the RandIsogImages
[NO23, Algorithm 2], as it additionally computes the corresponding ideal of these isogenies.

2. The second is a method to compute, given K a generator of the kernel of an isogeny, the correspond-
ing ideal even when its degree is not smooth. This method is an adaptation of the work of Leroux
over verifiable random functions in [Ler23] to use big prime order isogenies as isogeny challenge.

3.2.1 KaniDoublePath

The main idea behind KaniDoublePath is likewise to DoublePath to construct two isogenies of co-
prime degree between E1728 and another supersingular curve E. The main interest of KaniDoublePath
lies in the fact that those isogenies are not necessary smooth.
To do so, we first use the FullRepresentInteger to find γ P EndpE1728q an endomorphism such that
degpγq “ ℓpN ´ ℓq with ℓ and N coprime such that N is smooth. Using corollary 1.2.8, we can write
γ “ ρ ˝ τ with deg τ “ ℓ, deg ρ “ N ´ ℓ. Using Kani’s Lemma and especially corollary 2.3.2 over the
following diagram, we compute the Kani’s isogeny F .

E E1728

E1728 E1

τ̂

ρ γ
τ̂˚ρ

ρ˚τ̂

F : E2
1728 Ñ E ˆ E1

kerpF q “

!

`

rℓspP q, γpP q
˘

ˇ

ˇ

ˇ
P P E1728rN s

)

We can therefore evaluate both τ and ρ̂ at any points of E1728. Additionally to [NO23, Algorithm 2], we
also retrieve Iτ and Iρ the ideal corresponding to τ and ρ using the factorization of γ.

Iτ “ O1728γ ` O1728ℓ Iρ “
IτO1728γ

ℓ
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Algorithm 7 KaniDoublePath

Input: O1728 an evaluation basis of EndpE1728q with xP,Qy a basis of E1728rN s and ℓ s.t.
gcdpℓ,Nq “ 1 and ℓpN ´ ℓq ą p with N smooth
Output: τ ,pρ : E1728 Ñ E isogenies of respective degree ℓ and N´ℓ given as dimension 2 isogenies,
together with Iρ and I

pρ their ideals.

1: γ Ð FullRepresentIntegerpO1728, ℓpN ´ ℓqq

2: B Ð
␣`

rℓsP, γpP q
˘

,
`

rℓsQ, γpQq
˘(

3: F Ð HDKernelToIsogenypBq

4: Iτ Ð O1728γ ` O1728ℓ
5: Iρ̂ Ð 1

ℓO1728γIτ
6: return F, Iτ , Iρ̂ Ź τpP q “ F pP, 0q1 and ρ̂pP q “ ´F p0, P q1

When ℓ is prime, contrary to DoublePath, we are not considering long paths over one supersingular
graph Gℓp but are instead considering neighbors of E1728 over Õp

?
pq distinct supersingular isogeny graphs.

We base our analysis on the following assumption.

Assumption 3.2.1:

The following two distributions are computationally indistinguishable.

• E a curve sampled randomly among all supersingular curves.

• E the random neighbour of 1728 in Gℓp with ℓ a random prime in r
?
p logppq´1,

?
p logppqs.

Following lemma 2.2.6, we have that with extremely high probability, any curve E is the neighbor of
E1728 in some Gℓp, with ℓ in the above interval. It is therefore sound to assume that the distribution
is close from uniform. It nevertheless would require further studies, as we found non literature on that
specific problem. Using this mathematical assumption, we can then justify the output distribution of
KaniDoublePath as follows.

Corollary 3.2.2:

Under assumption 3.2.1 together with other heuristics and if N » p, then the following distribu-
tions are computationally indistinguishable.

• E a curve sampled randomly among all supersingular curves.

• E the codomain of τ and ρ̂, outputted by KaniDoublePathpN,P,Q, ℓq with ℓ a random
prime in r

?
p logppq´1,

?
p logppqs.

Proof of Corollary 3.2.2:
Consider the following distributions:

1. E the codomain of τ and ρ̂, outputted by KaniDoublePathpN,P,Q, ℓq with ℓ a random prime in
r
?
p logppq´1,

?
p logppqs.

2. E the codomain of τ and ρ̂, with ρ ˝ τ an endomorphism of E1728 of degree ℓpN ´ ℓq, with ℓ a
random prime in r

?
p logppq´1,

?
p logppqs.

3. E the neighbour of 1728 in Gℓp with ℓ a random prime in r
?
p logppq´1,

?
p logppqs.
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4. E a curve sampled randomly among all supersingular curves.

We can go from 1. to 2. using lemma 2.2.4 as we have that the FullRepresentInteger algorithm
outputs endomorphisms that are computationally indistinguishable from a uniform sample among all
endomorphism of norm ℓpN ´ ℓq.
To go from 2. to 3., we use the same heuristic argument as [NO23] i.e. that there are at least N´ℓ`1 » p
isogenies of degree N ´ ℓ over any curve E. It is therefore very likely that we can find an isogeny with
domain E and with codomain E1728. If we do the heuristic assumption that isogenies of size Oppq have
a codomain close from random, then there is an isogeny of degree N ´ ℓ between E1728 and E with
probability around 12pN ´ ℓq{p » 1.
Going from 3. to 4. is given by assumption 3.2.1.

l 3.2.2

3.2.2 KernelToIdeal for generic degree isogenies

Going back to the details of KernelToIdeal, we see that it makes extensive usage of discrete logarithms
over Erds, with d being the degree of the isogeny. To be efficient, this method requires d to be smooth.
We therefore need another method for generic degree. The idea proposed by Leroux in [Ler23] is to use
the knowledge of the endomorphism ring of E to construct a special basis of Erds.

Definition 3.2.3: Special basis

Let E be any supersingular curve. pP,Q, ι, IP q is special basis of Erds, with:

• P,Q P E such that xP,Qy “ Erds.

• ι P EndpEq such that ιpP q “ Q.

• IP the ideal such that ErIP s “ xP y.

Given OE an evaluation basis of EndpEq, we can construct a special basis using the following algorithm,
proposed in [Ler23].

Algorithm 8 FindSpecialBasis

Input: OE “
`

tbiu
4
i“1, δ

˘

an evaluation basis of E with d an integer
Output: pP,Q, ι, IP q a special basis of Erds.

1: Sample R P$ Erds

2: Sample α P$ OE such that gcd
`

npαq, d2q “ d
3: if δ´1pαqpRq “ 0 do try with new R.
4: P Ð δ´1pαqpRq

5: IP Ð OEα ` OEd
6: Sample ι P$ OE such that gcdpnpιq, dq “ 1
7: if edpP, δ´1pιqpP qq “ 1 do sample new ι. Ź Ensures they are not colinear
8: return P, δ´1pιqpP q, δ´1pιq, IP

Using special basis, we can compute ideals from a kernel generator K P Erds using the following lemma.
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Lemma 3.2.4:

Let pP,Q, ι, IP q be a special basis of Erds and let K “ rasP ` rbsQ be a point in Erds. Then
ϕK : E Ñ E{xKy has for representing ideal

IK “ ra` bδpιqs˚IP

Proof of Lemma 3.2.4:

xKy “ xrasP ` rbsQy

“ xrasP ` rbsιpP qy

“ ra` bιsxP y

i.e. ϕK “ ra` bδpιqs˚ϕP

using the Deuring correspondence, we get the desired result.
l 3.2.4

We can therefore compute ideals of any degree but the method that we presented here requires knowing
OE . We now present a modification of lemma 3.2.4 that just requires knowing O1728 and ϕ : E1728 Ñ E
an isogeny of degree coprime to d.

Corollary 3.2.5:

Let pP,Q, ι, IP q be a special basis of E1728rds and let ϕ : E1728 Ñ E be an isogeny with corre-
sponding ideal Iϕ such that d and degpϕq are coprime. Let S, T P E be the respective images of
P and Q by ϕ and let K “ rasS ` rbsT be a point in Erds. Then,

IK “
“

pa` bδpιqqIϕ
‰

˚
IP

Proof of Corollary 3.2.5:
Similarly to lemma 3.2.4, we have that

xKy “ rqsxKy

“ ϕϕ̂ xrasS ` rbsT y

“ ϕxrasϕ̂pSq ` rbsϕ̂pT qy

“ ϕxradsP ` rbdsQy

“ ϕxrasP ` rbsQy

“ ϕxrasP ` rbsιpP qy

“ ϕ ˝ ra` bιsxP y

i.e. ϕK “ rϕ ˝ pa` bιqs˚ϕP and thus IK “ rpa` bδpιqqIϕs˚IP

l 3.2.5

Note that [Ler23] propose to use ϕ to directly compute a special basis over E. Indeed, if pP,Q, ι, IP q is a
special basis over E1728rds, then

`

ϕpP q, rdegpϕqsϕpQq, θ, rIϕpa`bδpθqqs˚IP
˘

is a special basis of Erds with

θ “ ϕ ˝ ι ˝ pϕ. The main interest of corollary 3.2.5 comes from the fact that it only uses endomorphism
over E1728 and not over E. This therefore lightens the computational cost, and is more suited to our
usage in SQIPrime.
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3.3 Construction

Now that we are familiar with the architecture behind SQISign and SQISignHD and have introduced
and explained the new tools that it utilize, we can construct SQIPrime. As previously stated in the
introduction, SQIPrime further-expend the use of the Kani’s Lemma to both KeyGen and Commit. More
precisely, SQIPrime is based on the architecture in Figure 3.2 and is performed as such

E1728 E1

EA E2

ψ

τ

φ

σκ

Figure 3.2: Diagram of SQIPrime, prover in blue and verifier in red. Dashed isogenies are secrets

• KeyGen: Compute τ : E1728 Ñ EA together with its corresponding ideal Iτ using KaniDou-
blePath. Additionally, compute a matrix M and use it to mask the image through τ of a special
basis of degree qN , with q » 2λ prime. EA and the masked basis is the public key, while τ and the
matrix M is the secret key.

• Commit: The prover computes an isogeny ψ : E1728 Ñ E1 with KaniDoublePath together with
its ideal Iψ and shares E1. This curve is the domain of the response.

• Challenge: The verifier computes a challenge point C1 P EArqs and send it to the prover.

• Response: Using the special basis over E1728 and its knowledge of Iτ , the prover retrieves Iφ, with
kerpφq “ xC1y. It then computes σ : E2 Ñ E1 different from ψ ˝ τ̂ ˝ φ̂ using RandomEquivalen-
tIdeal and construct κ “ σ ˝ φ, evaluate it using EvalTorsion and send this evaluation of κ as a
response to the verifier.

• Verify: The verifier receives κ and checks using EvalKani that it is valid by seeing if κpC1q “ 0.

The public parameters of SQIPrime are defined as such.

Algorithm 9 SQIPrime.Setup

Input: 1λ

Output: pp “
`

p, pP0, Q0q, pP,Q, ι, IrNsP q, β
˘

1: Take p a prime of the form p “ 22λf ´ 1 such that p ´ 1 “ 2Nq with q » 2λ prime and N
coprime to q.

2: P0, Q0 Ð CanonicalTorsionBasispE1728, 2
2λq

3: pP,Q, ι, IP q Ð FindSpecialBasispO1728, qNq

4: Compute IrNsP “ IP ` O1728q
5: β Ð rlog2ppq{2 ` log2pqq ` log2 log2ppqs

6: pp Ð
`

p, pP0, Q0q, pP,Q, ι, IrNsP q, β
˘

7: return pp
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3.3.1 Key generation & commitment

Both key generation and commitment consist essentially in using KaniDoublePath. We take a random
prime ℓ P r

?
p logppq´1,

?
p logppqs and use the KaniDoublePath with an endomorphism of norm ℓp22λ´

ℓq to retrieve τ in the case of SQIPrime.KeyGen and ψ in SQIPrime.Commit. The only significant
differences between the secret key and the challenge generation is that during the key generation, we
additionally compute a masked basis of EArNqs. To do so, we compute the image of pP,Qq through the
isogeny τ and use a random matrix M P GL2pNqq to mask the torsion points. Note that this masking is
necessary as N could be smooth, in which case, we could retrieve τA using EvalKani.

Algorithm 10 SQIPrime.KeyGen

Input: pp “
`

p, pP0, Q0q, pP,Q, ι, IrNsP q, β
˘

Output: sk “
`

EA,FA, Iτ ,M
˘

, pk “
`

EA, pR,Sq
˘

with FA a HD-isogeny representing τ : E1728 Ñ

EA with corresponding ideal Iτ . M P GL2pNqq and R,S a basis of EArNqs.

1: Sample ℓA a random prime in r
?
p logppq´1,

?
p logppqs such that ℓA ‰ q.

2: FA, Iτ , ˚ Ð KaniDoublePathp22λ, P0, Q0, ℓAq

3: Compute EA.
4: Sample M P$ GL2pNqq

5:
`

R
S

˘

Ð M
`

F pP,0q1
F pQ,0q1

˘

6: return pFA, Iτ ,Mq,
`

EA, pR,Sq
˘

Algorithm 11 SQIPrime.Commit

Input: pp “
`

p, pP0, Q0q, pP,Q, ι, IrNsP q, β
˘

Output: sec “
`

E1,F1, Iψ
˘

, pub “ pE1q with F1 a HD-isogeny representing ψ : E1728 Ñ E1 with
corresponding ideal Iψ.

1: Take ℓ1 a random prime in r
?
p logppq´1,

?
p logppqs such that ℓ1 ‰ q

2: F1, Iψ, ˚ Ð KaniDoublePathp22λ, P0, Q0, ℓ1q

3: Compute E1

4: return
`

F1, Iψ
˘

,
`

E1

˘

3.3.2 Challenge & response

Challenge

As touched earlier, our challenge is significantly different from the challenge of SQISign and SQISignHD,
as the evaluation of the challenge isogeny has been moved from the verifier to the prover. This adjustment
is necessary since the verifier lacks an efficient means to evaluate this isogeny, as it only has access to
kernel representation of φ, whose degree is not smooth. In idea, the prover uses ideal representation to
construct an HD representation of φ that is then sent to the verifier together with the HD representation
of the answer isogeny σ. Thus, instead of providing an isogeny of smooth degree, the challenger simply
sends a challenge point C1 P EArqs. This point is given as a P Zq such that C1 “ rN spR`rasSq. with R,S
given during SQIPrime.KeyGen. This point is the generator of the kernel of φ : EA Ñ E{xC1y “ E2.
We have q » 2λ possible challenge isogenies.
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Response

In line with SQISignHD, our objective is to compute an isogeny σ : E2 Ñ E1 but the verifier lacks
knowledge of E2. An idea would be to provide him with an HD representation of φ as the verifier could
check that the kernels match but the problem lies in the need for knowledge of a third map between
E1728 and E2, which is something that would be complex to construct.1

So instead of sending σ and φ separately, we send κ “ σ ˝ φ and use the Kani’s Lemma over κ to prove
that φ factors through κ using the fact that kerpκqXEArqs “ kerpφq. But first, we have to adapt corollary
3.2.5 to compute IC1 “ Iφ. Having received the challenge Chal “ a, the prover has to find b, c P Zq such

that C1 “ rN s

´

rcsτpP q ` rdsτpQq

¯

. Those scalars are computable as
`

b
c

˘

“ M´1
`

1
a

˘

. Having computed b

and c, we can then compute IC1
as

IC1
“
“`

b` cδpιq
˘

Iτ
‰

˚
IrNsP

We then compute the pO2,O1q-ideal IC1
IτIφ and find another small pO2,O1q-ideal J using RandomE-

quivalentIdeal. Following lemma 2.2.4, we expect npJq to be smaller than
?
p logppq. J correspond

to the isogeny σ : E2 Ñ E1 of prime degree d that closes our diagram in figure 3.2. Additionally, we
want, to ensure the efficiency of the verification, that 2β ´ qd “ 1 mod 4 and is prime and thus use the
Kani’s Lemma in dimension 4. If d does not have this property, then we simply sample a new J using
RandomEquivalentIdeal. Heuristically, this event should occur with probability Op1{λq.2

The response to our challenge is to give the isogeny κ “ σ ˝ φ to the verifier as an HD representation
together with d the degree of σ. We first callCanonicalTorsionBasis over EA to find a basis3 of EAr22λs

and then simply use EvalTorsion. Note that the probability that d “ ℓ1 or that d “ ℓA is negligible.
Additionally, we also use EvalTorsion to compute and send the image of a third point C2 “ rasR ´ S.
This additional point is used to ensure the soundness of our verification. It is important to note that C2

is such that xC1, rN sC2y “ EArqs.

Algorithm 12 SQIPrime.Response

Input: pp, sk, sec, chal “
`

p, pP0, Q0q, pP,Q, ι, IrNsP q, β
˘

, pFA, Iτ ,Mq, pF1, Iφq, a with a P Zq .

Output: res “ pS, T, U, dq with S, T P E1r22λs, U P E1rNqs and d the degree of φ.

1:
`

b
c

˘

Ð M´1
`

1
a

˘

2: IC1 Ð rpb` cιqIτ s˚IrNsP

3: J Ð RandomEquivalentIdealpIC1
IτIψq d Ð npJq

4: check if 2β ´ dq “ 1 mod 4 and is prime. If not, go back to line 3.
5: X,Y Ð CanonicalTorsionBasispEA, 2

2λq

6: C2 Ð rasR ´ S
7: Define τ “ pFAp´, 0qq1 and ψ “ pF1p´, 0qq1.

8: S, T, U Ð EvalTorsion
´

O1728, τ, Iτ , ψ, Iψ, IC1
J, qd, tX,Y,C2u

¯

9: return res “ pS, T, U, dq

3.3.3 Verification

Upon receiving S, T, U, d we want to verify that the following statement hold:

1We could use the KLPT and then use the IdealToKernel algorithm but avoiding this algorithm was a reason behind
the development of SQISignHD.

2This is the method used in [DLRW23]. They furthermore constructed in [DLRW23, E.2] a method to efficiently perform
this random sampling.

3As they are given by CanonicalTorsionBasis, they are not sent to the verifier. We could also take any basis of
EAr22λs but we would need to specify in res.
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• The torsion points we received define an HD representation of an isogeny κ : EA Ñ E1 of degree
dq such that the isogeny φ factors through κ, meaning that kerpκqrqs “ xC1y.

To do this verification efficiently, we modify EvalKani so that we never have to compute the full isogeny
F . We have the following diagram:

E2
A E2

1

E2
A E2

1

Σ

γ γ

Σ

γ :“

ˆ

a1 ´a2
a2 a1

˙

with degpγq “

2
ÿ

i“1

a2i ; Σ :“ diagpκ, κq

Using Kani’s Lemma and corollary 2.3.2, we split the isogeny

F “

ˆ

Σ̃ ´γ̃
γ Σ

˙

in two isogenies F1 and F2 with F “ F2 ˝ F1 and degFi “ di with

kerF1 “

!

`

ΣpP q,´γpP q
˘

ˇ

ˇ

ˇ
P P E2

Ard1s

)

kerĂF2 “

!

`

´ γ̃pP q,ΣpP q
˘

ˇ

ˇ

ˇ
P P E2

Ard2s

)

We then use the following property:
Let X P EA be a point of order coprime to d1d2, Then we have the following equivalence.

F

¨

˚

˚

˝

0
0
X
0

˛

‹

‹

‚

“

¨

˚

˚

˝

ra1sX
r´a2sX
Y
0

˛

‹

‹

‚

ðñ rd2sF1

¨

˚

˚

˝

0
0
X
0

˛

‹

‹

‚

“ ĂF2

¨

˚

˚

˝

ra1sX
r´a2sX
Y
0

˛

‹

‹

‚

We use this equivalence on the two points C1 and C2 of respective order q and Nq.
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Algorithm 13 SQIPrime.Verify

Input: pp, pk, com, chal, res “
`

p, pP0, Q0q, pP,Q, ι, IrNsP q, β
˘

, pEA, R, Sq, E1, a, pS, T, U, dq

Output: b P t0, 1u

1: if one of the points S, T, U is not in E1 do return 0

2: d1 Ð 2t
β
2 u, d2 Ð 2r

β
2 s, k1 Ð 22λ{d1, k2 Ð 22λ{d2

3: pa1, a2q Ð Cornacchiap2β ´ qdq

4: Compute γ and γ̃
5: Compute tPi,ju0ďi,jď2,2 a basis of E2

Ar22λs Ź Using CanonicalTorsionBasis
6: B1 Ð

␣`

rk1sΣpPi,jq, r´k1sγpPi,jq
˘(

0ďi,jď2,2
Ź ΣpPi,jq computed using S, T

7: B2 Ð
␣`

r´k2sγ̃pPi,jq, rk2sΣpPi,jq
˘(

0ďi,jď2,2

8: F1 Ð HDKernelToIsogenypB1q

9: F̃2 Ð HDKernelToIsogenypB2q

10: if codomainpF1q ‰ codomainpF̃2q do return 0 Ź Do like [DLRW23, section F.3]
11: C1 Ð rN spR ` rasSq, C2 Ð prasR ´ Sq

12: b1 Ð rd2sF1p0, 0, C1, 0q
?
“ F̃2pra1sC1, r´a2sC1, 0, 0q

13: b2 Ð rd2sF1p0, 0, C2, 0q
?
“ F̃2pra1sC2, r´a2sC2, U, 0q and rN sU ‰ 0.

14: return b1 ^ b2

Proposition 3.3.1: Correctness of SQIPrime

Let pp, pk, chal be a valid public key, commitment, and challenge of SQIPrime and let P,Q be the
canonical basis of EAr22λs. Let Res be any possible response. Then

SQIPrime.Verifyppp, pk, pub, chal,Resq “ 1 ðñ Res “ pS, T , U, dq is such that:

• pP,Q, S, T q is an HD representation of an isogeny κ : EA Ñ E1 of degree qd.

• kerpκq X Erqs “ xC1y.

Proof of Proposition 3.3.1:
Our proof takes inspiration from [DLRW23, section E.5]. Assume that SQIPrime.Verifyppp, pk, pub, chal,Resq “

1. Then, this means that S, T , U are in E1, that rN sU ‰ 0, that F1 and F2 are well-defined, have the
same codomain and that the following equalities hold.

rd2sF1p0, 0, C1, 0q “
ĂF2pa1C1,´a2C2, 0, 0q and rd2sF1p0, 0, C2, 0q “

ĂF2pa1C1,´a2C2, U, 0q

Therefore F p0, 0, C1, 0q “ pa1C1,´a2C2, 0, 0q and F p0, 0, C2, 0q “ pa1C1,´a2C2, U, 0q

From isogeny F ,using ιi and ρj the standard injections/restrictions of product spaces, we can construct
16 elliptic curve isogenies F i,j “ ρi ˝ F ˝ ιj with 1 ď i, j ď 4 such that for all j “ 1, ¨ ¨ ¨ , 4:

4
ÿ

i“1

degpF i,jq “ degpF q “ 2β

We interest ourselves at j “ 3. We want to show that for i “ 1, 2 and 4, Fi,3 “ rbis with bi “ a1,´a2
and 0. To do so, we use corollary 1.3.9. Indeed, using the triangular inequality.

for i “ 1, 2, 4; degpF i,3 ´ rbisq ď 4 ¨ 2β » 22λ`2 logpλq`2
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But we know that F i,3 “ rbis for all points generated by xC1, C2y , i.e, for Nq2 » 23λ points. Thus,
F 1,3 “ ra1s, F 2,3 “ r´a2s and F 4,3 “ 0, meaning using the previous equality that F 3,3 is an isogeny
of degree qd between EA and E1. Furthermore, we have that F 3,3pC1q “ 0 and that F 3,3prN sC2q ‰ 0,
meaning that kerF 3,3 X EArqs “ xC1y, proving our point.

l 3.3.1

Table 3.1 gives us a comparative between SQISign, SQISignHD and SQIPrime.

SQISign SQISignHD SQIPrime

prime 2fT |pp2 ´ 1q and T “ DT 1 p “ 2λ3λ
1

f ´ 1 p “ 22λf ´ 1 and p´ 1 “ 2Nq
Key gen l‚ isogenies 2λ isogenies p2, 2q-isogenies

Commitment T 1 isogenies 2λ isogenies p2, 2q-isogenies

Challenge D isogenies 3λ
1

isogenies C P EArqs

Response kernel representation HD representation HD representation
Verification l‚ isogenies p2, 2q-isogenies p2, 2q-isogenies

Table 3.1: Comparative of the SQISign Family

3.4 Security analysis

To construct the SQIPrime digital signature scheme by applying the Fiat-Shamir transform [FS86], we
still have to prove that SQIPrime is an identification scheme, i.e. that SQIPrime is a Σ protocol. We
also discuss how to find good prime numbers for SQIPrime.

3.4.1 SQIPrime is a Σ protocol

To prove that SQIPrime is a Σ protocol, we have to prove special soundness and HVZK. The extractor
is constructed as follows.

Proposition 3.4.1: SQIPrime Extractor E

Let pE1, a1, S1, T1, U1, d1q and pE1, a2, S2, T2, U2, d2q be 2 transcripts with identical commitment
E1 and different challenges points a1 and a2. There exists an extractor E that, given both tran-
script, can efficiently solve the endomorphism problem over EA.

Proof of Proposition 3.4.1:
Our proof is very similar to [DLRW23, section 5.1]. The only meaningful difference comes from the fact
that the probability that any two of q, d1 and d2 are not coprime is negligible.
We can use S1, T1 to compute an HD representation of κ1 “ σ1 ˝ φ1 and S2, T2 to compute an HD
representation of xκ2 “ {σ2 ˝ φ2. Then, α “ xκ2 ˝ κ1 P EndpEAq is non-scalar, as otherwise, we have that
α “ rχs such that χ2 “ q2d1d2 and thus χ “ qχ1. Therefore rd2sκ1 “ rχ1sκ2 and as d2, d1 and χ1 are
coprime, this induces that φ1 “ φ2 i.e., that a1 “ a2, which is a contradiction.

l 3.4.1

The extractor ensures us that SQIPrime has special soundness. Similarly to [DLRW23, section 5.2], we
construct the simulator under the assumption that we have access to the following oracle.
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Definition 3.4.2: RUCGIO

The Random Uniformly Constrained Good Isogeny Oracle (RUCGIO) is an oracle that
take as input E any supersingular curve together with P P Erqs and that return an efficient
representation of κ : E Ñ E1 of degree qℓ with ℓ prime such that:

• E1 is uniformly distributed over all supersingular curves.

• κ is uniformly distributed among all isogenies between E and E1 such that P P kerpκq and
such that 2β ´ qℓ is a prime equal to 1 mod 4.

Proposition 3.4.3: SQIPrime simulator S

Given pp, pk and chal, there exists a PPTpλq simulator S with access to a RUCGIO that simulates
transcripts with a distribution that is computationally indistinguishable from the distribution of
transcripts of SQIPrime, conditioned to chal.

Proof of Proposition 3.4.3:
Given a P Zq, we compute C1 “ rN spR`rasSq. Calling RUCGIO over EA and C1, we retrieve an efficient
representation of κ : EA Ñ E1 and use this representation to compute the points X “ κpAq, Y “ κpBq,
and Z “ κprbsR ´ rasSq with A,B the canonical basis over EAr22λs.
We then simply return the following transcript

pE1, a,X, Y, Z,degpκq{qq

This transcript is computationally indistinguishable from a genuine transcript, as:

• Following corollary 3.2.2, we have that a genuine E1 or one given by RUDGIO are computationally
indistinguishable.

• Following lemma 2.2.6, a genuine κ or one given by RUDGIO are computationally indistinguishable,

and so does X,Y, Z, degpκq

q .

l 3.4.3

We now make the following assumption.

Assumption 3.4.4:

The endomorphism problem remains hard even when given access to RUCGIO.

By definition, RUCGIO, when given an input C, generates a random isogeny that factors ϕC and that
are of good degree. If C is of smooth order, then RUCGIO is in fact equivalent to the RUGDIO oracle
[DLRW23, Definition 5.2.1]. Thus, the arguments of [DLRW23, section 5.3] also applies to RUCGIO. it
is therefore reasonable to assume that RUCGIO does not help to break the endomorphism problem.
Thus, using the Fiat-Shamir transform [FS86], we construct a digital signature scheme that is EU-CCA
in the ROM.

3.4.2 Finding “SQIPrime-friendly” primes

As touched on in SQIPrime.Setup, public parameters and especially the base prime numbers p are
different from primes in [FKL`20] and [DLRW23]. They can in fact be seen as a mix between the 2, as

52



they are similar to the “SIDH” primes of SQISignHD but also require conditions on both p` 1 and p´ 1
like SQISign. Nevertheless, in SQIPrime, the condition is just that p ´ 1 has a factor of size Op

?
pq. It

is thus easier to find “SQIPrime-friendly” primes than to find ‘SQISign-friendly” primes. They can in
fact be found by brute-force over f . Indeed, if we take p “ 22λf ´ 1 prime, then the probability that a
random prime q divides pp ´ 1q is 1{q. As there are about 2λp2t ´ 1q{λ distinct primes in r2λ, 2λ`ts, we
have that the probability that there is a prime q in r2λ, 2λ`ts that divides p is heuristically

P
”

Dq P
“

2λ, 2λ`t
‰

such that q
ˇ

ˇ

ˇ
pp´ 1q

ı

»

2λ`t
ÿ

qě2λ

P
“

q|pp´ 1q
‰

»

2λ`t
ÿ

qě2λ

1

q
ě

t
ÿ

i“1

2λ`i
ÿ

qě2λ`i´1

1

2λ`i

»

t
ÿ

i“1

2λ`i

pλ` iq

1

2λ`i
»

t
ÿ

i“1

1

λ` i
ě

t

λ` t

We give here a few examples of good candidates we found using this brute force method for λ “ 128:

p` 1 “ 22¨128 ¨ 11 ¨ 13 » 2263.15

p´ 1 “ 2 ¨ 32 ¨ 127 ¨ 2797 ¨ 112170853 ¨ 772493863 ¨ 2770313983597 ¨ q

q “ 1476396724822894822827907699057841897873 » 2130.11

p` 1 “ 22¨120 ¨ 39405 » 2255.93

p´ 1 “ 2 ¨ 3 ¨ 149 ¨ 2745335386200139 ¨ 122125102148171050639 ¨ q

q “ 369237590624773543866334185733060208813 » 2128.11

p` 1 “ 22¨120 ¨ 167 ¨ 397 » 2256.01

p´ 1 “ 2 ¨ 3 ¨ 7 ¨ 11 ¨ 41 ¨ 5683514583831199 ¨ 500402127095125861 ¨ q

q “ 2174422729538275144428922863792468335219 » 2130.67

The first prime is in line with our definition, while the latter two are constructed to be very close to 2256.
In each case, we have enough 2 torsion points to compute all HD isogenies.

Efficiency of SQIPrime

The next step with SQIPrime is to write an efficient implementation. This is something that we were
unable to do in the scope of this thesis, as that would have required a proper implementation of HD
isogenies. Nevertheless, we can make a reasonable assumption on the efficiency of SQIPrime based
on the implementations in SAGE of [DLRW23, section 6.2] and [NO23, section 5.3]. We expect to have
similar speed for SQIPrime.KeyGen and SQIPrime.Commit as QFESTA’s KeyGen. We also expect
SQIPrime.Verify to be two times slower than its counterpart in SQISignHD due to the fact that we
will use Kani’s Lemma over isogenies that are two time longer. This is therefore encouraging, especially
with the later speed-up in computing p2, 2q isogenies in [DMPR23].
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Chapter 4

SILBE: an UPKE on lollipop attacks

In this chapter, we present a new Public Key Encryption scheme (PKE) named Supersingular Isogeny
Lollipop Based Encryption or SILBE (“syllable” in german). As its name entails, SILBE’s inner workings
are rooted in lollipop attacks, particularly leveraging the generalized lollipop attack [CV23] on M-SIDH
[FMP23]. Thanks to its architecture, we can easily make of SILBE an Updatable Public Key Encryption
scheme (UPKE). This makes of SILBE the first1 isogeny-based UPKE not based on group actions as are
[LR22] and [EJKM20, section 6].
This chapter will be structured as such: Section 4.1 explains the definitions of UPKE, M-SIDH and of
lollipop attacks. Section 4.2 details how we construct the PKE SILBE. Finally, section 4.3 explains how
we can make of SILBE an UPKE together with a discussion on parameter selection.

4.1 Generalities

4.1.1 UPKE

First and foremost, we need to properly define the notion of Updatable Public Key Encryption (UPKE).
This notion was initially introduced in [BLMR15] as a relaxation of Forward Secure Public Key Encryption
(FSPKE), given the inherent complexity of constructing FSPKE systems and the shared advantageous
properties between the two. In addition to functioning as a PKE, UPKE allows for secure asynchronous
key updates. several UPKE schemes have been proposed based on discrete logarithm, LWE or DCR.
[DKW22, AHLP22]. The definition of UPKE provided below is taken from [EJKM20].

Definition 4.1.1: Updatable Public Key Encryption

Given λ a security parameter, an UPKE scheme is given by a set of 6 PPTpλq together with a
setup algorithm Setupp1λq Ñ pp the public parameters.

• KGpppq
$

ÝÑ psk, pkq

• Encppk,mq
$

ÝÑ ct

• Decpsk, ctqÝÑm

• UGpppq
$

ÝÑ µ

• Upkppk, µq ÝÑ pk1

• Uskpsk, µq ÝÑ sk1

Likewise to PKE, they also must ensure correctness

1To our knowledge, the only other proposed architecture was [EJKM20, section 5], that was based on the extended-SIDH
and was named by its authors an “online UPKE” as it was not fully asynchronous.
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P

»

—

—

–

Dec
`

ski,Encppki,mq
˘

“ m

ˇ

ˇ

ˇ

ˇ

ˇ

psk0, pk0q
$

ÐÝ KGp1λq,

µi
$

ÐÝ UGp1λq,
´

ski, pki

¯

$
ÐÝ

´

Uskpski´1, µiq,Upkppki´1, µiq

¯

fi

ffi

ffi

fl

“ 1

We make a slight abuse of notation, as all algorithms know of pp, but this choice is made to clarify
already heavy notations. The idea behind the security of an UPKE is to be a secure PKE with a key
update mechanism that ensures both Forward Security and Post-Compromise Security. The first notion
means that if the adversary learns about ski, then it can not use this information to retrieve skj for j ă i
without knowing the update values µj . Similarly, the second notion induces that the adversary is not
able to retrieve skj for j ą i without knowing the update values µj .
To ensure that those security notions are respected and to enable the adversary to adaptively choose
updates, we use the following oracles and lists.

• Upd list and Cor list are two lists that respectively store the updates made by the adversary and
what keys are corrupted.

• Fresh Upd: The Fresh-Update oracle samples a random update µi, computes the updated keys
pski`1, pki`1q and return pki`1.

• Given Upd: The Given-Update oracle computes the keys pski`1, pki`1q corresponding to a given
update µi and return pki`1. The update pi, i` 1q is added to Upd list.

• Corrupt: The Corruption oracle that receive an index j and return skj . It marks j as corrupted
together with all others keys of index i such that there is no fresh update in-between.

psk1, pk1q psk3, pk3q psk5, pk5q

psk0, pk0q psk2, pk2q psk4, pk4q psk6, pk6q

Given Fresh Given Given Fresh Fresh

Figure 4.1: Representation of the updated keys

The first two security notions we will consider are the INDistinguishability under quantum Chosen Plain-
text Attack with Updatability (IND-qCPA-U) and INDistinguishability under quantum Chosen Ciphertext
Attack with Updatability (IND-qCCA-U). In IND-qCCA-U, adversaries have access to an additional de-
cryption oracle ODec, that decrypt the ciphertext ct given by the adversary.
We have given just below a modular description of two games with the IND-qCCA-U additions in red.
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Game 4.1.2: IND-qCPA{qCCA-U

GIND-qCPA{qCCA-U
b pA1,A2q

1 : i “ 0

2 : Upd list “ Cor list “ H

3 : sk0, pk0
$

ÐÝ KGp1λq

4 : m0,m1, j, st ÐÝ AFresh Upd,Given Upd,Corrupt,ODec
1 ppk0q

5 : if m0 “ m1 return K

6 : ctb ÐÝ Encppkj,mbq

7 : d ÐÝ AGiven Upd,Fresh Upd,Corrupt,ODec
2 pctb, stq

8 : if IsFreshpjq do :

9 : return b “ d

10 : return K

ODecpk, cq Ñ m

1 : if k “ j and c “ ctb, return K

2 : return Decpskk, cq

IsFreshpjq

1 : return not j
?
P C

Fresh Updpq Ñ pki

1 : i “ i` 1 and µ
$

ÐÝ UGp1λq

2 : pski`1, pki`1q
$

ÐÝ pUskpski, µq,Upkppki, µqq

3 : return pki`1

Given Updpµq Ñ pki

1 : i “ i` 1

2 : pski`1, pki`1q
$

ÐÝ pUskpski, µq,Upkppki, µqq

3 : Upd list ÐÝ Upd list Y tpi, i` 1qu

4 : return pki`1

Corruptpjq Ñ skj

1 : Cor list “ Cor list Y tju

2 : i, k Ð j

3 : while pi´ 1, iq P Upd list do :

4 : Cor list “ Cor list Y ti´ 1u and i “ i´ 1

5 : while pk, k ` 1q P Upd list do :

6 : Cor list “ Cor list Y tk ` 1u and k “ k ` 1

7 : return skj

Definition 4.1.3: IND-qCPA{qCCA-U Secure

An UPKE is IND-qCPA/qCCA-U secure if for any given pA1,A2q quantum polypλq adversaries
such that

AdvIND-CPA{qCCA-U
pA1,A2q “

ˇ

ˇ

ˇ

ˇ

P
”

GIND-CPA{qCCA-U
1 pA1,A2q “ 1

ı

´ P
”

GIND-CPA{qCCA-U
0 pA1,A2q “ 1

ı

ˇ

ˇ

ˇ

ˇ

ď neglpλq

We also work with a third security notion, One-Wayness under quantum Plaintext Checking Attack with
Updatability (OW-qPCA-U). Here, instead of distinguishing between the ciphers of two chosen messages,
the adversaries have to decrypt a challenge ciphertext. Additionally, adversaries in this game have access
to OPCA a plaintext checking oracle that receives a plaintext and a ciphertext and returns if the ciphertext
is a valid encryption of the plaintext.
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Game 4.1.4: OW-qPCA-U

GOW-qPCA-UpA1,A2q

1 : i “ 0, Upd list “ Cor list “ H

2 : sk0, pk0
$

ÐÝ KGp1λq

3 : j, st ÐÝ AFresh Upd,Given Upd,Corrupt,OPCO
1 ppk0q

4 : m
$

ÐÝ M

5 : ct
$

ÐÝ Encppkj,mq

6 : n ÐÝ AGiven Upd,Fresh Upd,Corrupt,OPCO
2 pct, stq

7 : if IsFreshpjq do :

8 : return m
?
“ n

9 : return K

OPCOpm, c, pkiq Ñ b

1 : if m R M do

2 : return K

3 : else do

4 : return m
?
“ Decpski, cq

Definition 4.1.5: OW-qPCA-U Secure

An UPKE is OW-qPCA-U secure if for any given pA1,A2q quantum polypλq adversaries such
that

AdvIND-qPCA-UpA1,A2q “ P
“

GOW-qPCA-UpA1,A2q “ 1
‰

ď neglpλq

4.1.2 M-SIDH

Going back to isogenies and more precisely to SIDH, we have seen in section 2.3 how EvalKani could
be used to solve the supersingular isogeny problem with torsion point information. We now present some
countermeasures. To make the SIDH resistant to Kani’s Lemma, the idea of [Fou22, FMP23] is to mask
the torsion points, hence its name of Masked-SIDH (M-SIDH). The central idea comes from the following
equality. let φ be an isogeny of degree coprime to m. Then

A

rasφpP q ` rbsφpQq

E

“

A

rasprmsφpP qq ` rbsprmsφpQqq

E

meaning that inside the SIDH, if instead of sending φApP q, φApQq, we send rmsφApP q, rmsφApQq with
a secret number m coprime to the degree of φA, then we could still compute the required pushforwards.
Sadly, this is not so simple, as using Weil pairing, we have that eA

`

ϕpP q, ϕpQq
˘

“ eApP,Qqdeg ϕ. If A
is smooth, using discrete logarithm, we can recover deg ϕ mod A. Applied to rmsϕ, this entails that
we can recover m2 degpϕq mod A and thus m2 mod A. Finding the mask m is therefore equivalent to
finding the right square root of m2 in ZA. Thus, to be secure, we need to have a A such that ZA has
many roots of the unity, which means that A “

śn
i“1 pi with n large and pi distinct odd primes. This

is the general idea behind the M-SIDH that we now describe as presented in [FMP23]. Let the M-SIDH
public parameter be as follows:

• p “ ABf ´ 1 a prime number such that with A “
śnA
i“1 pi and B “

śnB
j“1 qj coprime such that

A » B and nA » nB .

• E a supersingular curve defined over Fp2 .

• xPA, QAy a basis of ErAs.
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• xPB , QBy a basis of ErBs.

with both Alice and Bob that can efficiently sample at random over µ2pAq “
␣

x P ZA
ˇ

ˇx2 “ 1
(

and µ2pBq.

M-SIDH

Alicepppq Bobpppq

sA Ð$ ZA, α Ð$ µ2pBq sB Ð$ ZB , β Ð$ µ2pAq

RA Ð PA ` rsAsQA RB Ð PB ` rsBsQB

ϕA, EA Ð KernelToIsogenypE,RA, Aq ϕB , EB Ð KernelToIsogenypE,RB , Bq

SA Ð rαsϕApPBq, TA Ð rαsϕApQBq SB Ð rβsϕBpPAq, TB Ð rβsϕBpQAq

EA, SA, TA

EB , SB , TB

UA Ð SB ` rsAsTB UB Ð SA ` rsBsTA

ψA, EK Ð KernelToIsogenypEB , UA, Aq ψB , EK Ð KernelToIsogeny
`

EA, UB , B
˘

K Ð KDF
`

jpEKq
˘

K Ð KDF
`

jpEKq
˘

It was proven in [FMP23] that the key security of M-SIDH reduces to the following problem with adequate
N and d.

Problem 4.1.6: Supersingular isogeny problem with masked torsion point information

Let ϕ : E Ñ E1 be an isogeny of degree d, let xP,Qy be a basis of ErN s with N “
śn
i“1 pi coprime

to d and let m P µ2pNq be a random element.
Given P,Q, rmsϕpP q, rmsϕpQq, compute ϕ.

The rationale behind why masking provides protection against EvalKani comes from the fact that the
torsion points we receive describe the isogeny rmsϕ whose degree is greater than N . Intuitively, we would
think that it suffice for nA and nB to be around λ each to ensure that we have |µ2pAq| “ 2λ, but this
is not sufficient. This is because instead of needing to find m mod N it suffice to find m mod Nt,
with Nt “

śn
i“t pi such that Nt ě

?
d. This is because we have enough torsion points on Nt to use

EvalKani efficiently and thus retrieve ϕ. Then, as m P µ2pNq, we have that m mod Nt P µ2pNtq with
|µ2pNtq| “ 2n´t, meaning that we have significantly diminished the numbers of possible masks. Taking
Nt with only the biggest factors of N is the optimal solution to increase Nt while minimizing |µ2pNtq|.
Using this method, we get the following theorem.

Theorem 4.1.7: [FMP23, Theorem 7] Attack by using less torsion point

Let ϕ : E Ñ E1 be an isogeny of degree d, xP,Qy “ ErN s with N “
śn
i“1 pi and define

Nt “
śn
i“t pi with t minimal such that Nt ě

?
d. Then, there exists an algorithm that solve

the supersingular isogeny problem with masked torsion point information in Õp2n´t`1q.

Theorem 4.1.7 induces that to ensure the security of M-SIDH, we need for A and B to be such that for
all At “

śnA
i“t pi, we have that At ě

?
B ñ nA´ t ě λ and similarly for B. As shown in [FMP23, section

7.3], the number of needed distinct prime divisors of p is around 4.5λ. M-SIDH is therefore significantly
slower than SIDH as further supported in [LLC`23, section 5]. It was also shown in [FMP23, section

58



4.2] that M-SIDH was also insecure if the starting curve has a non-small endomorphism or a known
endomorphism ring. Finally, it was shown in [CV23] that M-SIDH was insecure if the starting curve was
defined over Fp, as we can perform a lollipop attack.

4.1.3 Generalised lollipop

We briefly mentioned lollipop attacks when we talked about SIDH in section 2.1.2. They were originally
introduced in [Pet17], improved in [dQKL`20] and used in [FP21] as attacks over the SIDH and super-
singular isogeny problem with torsion point information. The original lollipop attack used the knowledge
of the endomorphism ring over the starting curve of a secret isogeny φ. In the case of SIDH, this curve
often was E1728.
To retrieve φ, we choose a non-trivial endomorphism θ P EndpE1728q and findM the matrix that represent
the action of θ over the basis xP,Qy of E1728rN s. We choose θ specifically such that the lollipop Σ P

EndpEq defined as Σ “ φ ˝ θ ˝ pφ ` rms is of degree N . Seeing ErN s over the basis xφpP q, φpQqy, we
have that the action of Σ is given by the matrix rdsM ` rmsId2, meaning that we know kerpΣq. We
then evaluate Σ over any points with KernelToIsogeny. By subtracting rms, we can therefore evaluate
φ ˝ θ ˝ pφ over Erds and thus retrieve information on kerppφq.

E1728 E1

E1728 E

E E2

φ
pφ

θ

φ

pφ
θ

ψ1

xψ2

ψe

Figure 4.2: Examples of lollipop attacks. The left one is the original attack in [Pet17] while the second
is taken from [FP21]. Red isogenies are secrets, while blue isogenies are chosen by the attacker.

We now present the generalized lollipop attack, an attack that works over M-SIDH. It is detailed in [CV23].
Its general idea is to use the fact that the domain of the mask isogeny φ is defined over Fp to construct a
new unmasked isogeny ψ, and use EvalKani over ψ to retrieve kerpψq and extract kerpφq from kerpψq.
To be more specific, let φ : E0 Ñ E be an isogeny of degree d, with E0 defined over Fp. We set xP,Qy to be

a basis of E0rN s and S, T to be the masked image of those points, i.e.
`

S
T

˘

“ Aφ
`

P
Q

˘

with A “

ˆ

m 0
0 m

˙

.

We then consider the following diagram, where we denote as ϕppq the map π˚ϕ. Because E0 is defined
over Fp, we have that π P EndpE0q and its pushforward is well-defined.

E

E0

Eppq

φ

π π

φppq

ψ

We set ψ “ φppq ˝ pφ. We will then use the following lemma.
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Lemma 4.1.8: [CV23, Lemma 3]

Using the above notation, assume that the matrix Mπ̂ is such that

pπ

ˆ

P

Q

˙

“ Mπ̂

ˆ

P

Q

˙

Then, we have that

ψ

ˆ

S

T

˙

“ dp´1Mπ̂π

ˆ

S

T

˙

mod N

meaning that we can compute ψpErN sq.

Proof of Lemma 4.1.8:
As φppq ˝ π “ π ˝ φ, we have that rpsφppq “ π ˝ φ ˝ pπ. Thus using Mπ̂ “ π̂|E0rNs, we have that

rpsψ

ˆ

S

T

˙

“ rpsφppq ˝ pφ

ˆ

S

T

˙

“ rdsA

ˆ

rpsφppq

ˆ

P

Q

˙˙

“ rdsA

ˆ

π ˝ φ ˝ pπ

ˆ

P

Q

˙˙

“ rdsAMπ̂

ˆ

π ˝ φ

ˆ

P

Q

˙˙

“ rdsAMπ̂A
´1π

ˆ

S

T

˙

“ rdsMπ̂π

ˆ

S

T

˙

i.e. ψ

ˆ

S

T

˙

“ pdp´1modNqMπ̂π

ˆ

S

T

˙

“ dM´1
π

ˆ

S

T

˙

l 4.1.8

As we can evaluate ψ over ErN s and we have that degpψq “ d2 ď N2, we can use EvalKani over ψ to
evaluate ψ over any points and in particular over Erds. By definition, we have that kerppφq Ď kerpψqrds “

kerpψq X Erds, but we do not necessarily have an equality, meaning that we have not yet found kerppφq.
Nevertheless, we have gained a substantial among of information. Indeed, consider d1 the biggest divisor
of d such that kerpψqrd1s “ Erd1s. We have that rd1s

`

kerpψqrds
˘

is a cyclic group of size d{d1, meaning

that using KernelToIsogeny over a generator of rd1s
`

kerpψqrds
˘

will give us φ1 : E Ñ E1 a component
of degree d{d1 of pφ

E E1 E0

pφ

φ1
xφ2

We have retrieved φ1, it therefore remains to retrieve φ2, of degree d
1. The fact that kerpψqrd1s “ Erd1s

induces that
kerpφqrd1s “ kerpφppqqrd1s “ π

´

kerpφqrd1s

¯

i.e. kerpφqrd1s is an eigenspace of pπ over Erd1s. This information is especially useful as this tremendously
reduces the possibilities for φ2. We will only detail here the case d1 “ qℓ with q a prime number. The
generalized case is detailed in [CV23, section 3.2]. We have three distinct scenarios that depend on how
q behave in Zrpπs – Zr

?
´ps. See [Sam13] for more details in the reason behind this partition.

1. q is inert in Zr
?

´ps, meaning that
´

´p
q

¯

“ ´1. In that case, we have that p remains prime and

thus that pπ is not diagonalizable over Erd1s, meaning that d1 “ 1 and that kerpψqrds “ kerpφ̂q.
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2. q is decomposed in Zr
?

´ps, meaning that
´

´p
q

¯

“ 1. We have that pπ has two distinct eigenvalues

over Erd1s, i.e. two distinct eigenspaces. We therefore have restricted the possibilities to two
eigenvectors and can construct the corresponding isogenies φ1

2 and φ2
2. The valid φ2 is the one with

the same codomain as φ1.

3. q is ramified in Zr
?

´ps, meaning that
´

´p
q

¯

“ 0. In this case, π has one eigenvalue with an

eigenspace of dimension two, and we gain no information about isogeny φ2. This scenario thankfully
does not occur when φ is separable.

Using this method, we get the following result.

Theorem 4.1.9: [CV23, section 4] M-SIDH Generalized Lollipop Attacks

Let φ : E0 Ñ E be an isogeny of degree d with E0 defined over Fp and let P,Q be a basis of E0rN s,
with N smooth such that N ě d. Then, there exists an algorithm named GeneralisedLollipop
that efficiently solve the supersingular isogeny problem with masked torsion point information
over these parameters.

The implications of generalized lollipops are not restricted to M-SIDH and can also be used over other
cryptosystems such as FESTA [BMP23] and CSIDH [CLM`18]. Nevertheless, this attack does not
significantly lower the assumption that the supersingular isogeny problem with masked torsion point
information is hard over random curves, as the probability that a random supersingular curve is defined
in Fp is in Θpp´1{2q, which is negligible.

4.2 PKE from M-SIDH attacks

The core concept behind SILBE is to leverage the generalized lollipop attack and the GeneralisedLol-
lipop algorithm as a deciphering mechanism, akin to how the original lollipop attack was employed in
designing SETA [FdSGF`19]. This endeavor will make usage of all the different isogeny representations
that we detailed in chapter 2. SILBE is in fact related to [CV23, section 4.3] and the idea of M-SIDH
with trapdoor curves, although there are substantial changes that we now detail.
The underlying architecture behind the PKE part of SILBE is given in figure 4.3. It works as follows:

• KG: Alice computes a long isogeny between E1728 and EA. Using EvalKani, it retrieves the
representing ideal I and use RandomEquivalentIdeal to find a short connecting isogeny ϕA :
E1728 Ñ EA. EA is then used as the public key while ϕA is the secret key.

• Enc: Bob computes ϕB : EA Ñ EB an isogeny. It then sends the masked image by ϕB of a basis
EArN s, with the mask is the message m.

• Dec: Using its knowledge of ϕA, Alice uses GeneralisedLollipop over ϕB ˝ϕA to retrieve kerpxϕBq

and using the discrete logarithm, it retrieves m.

The public parameters of SILBE are constructed as such.
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EA EB

E1728

E
ppq

A E
ppq

B

rπs˚IϕA

IϕA

π π

ϕB

ϕ
ppq

B

π ψ

Figure 4.3: Diagram of the PKE part of SILBE, Alice in red and Bob in blue

Algorithm 14 SILBE.Setup

Input: 1λ

Output: pp “
`

p, pP0, Q0q, pV0, U0q,Mπ, t
˘

with p a prime, xP0, Q0y “ E1728rN s, xU0, V0y “

E1728r3βs, Mπ P GL2pNq and t an integer.

1: Take p a prime of the form p “ 3βNf ` 1 such that p “ 3 mod 4 and N “
śn
i“1 pi with pi

distinct odd small prime numbers such that N ě 3βp1{2 logppq2, N is coprime to 3 and n big

enough such that for all Nk “
śn
i“k pi, we have that Nk ě

?
3β ñ n´ k ě λ.

2: P0, Q0 Ð CanonicalTorsionBasispE1728, Nq

3: U0, V0 Ð CanonicalTorsionBasispE1728, 3
βq

4: Mπ Ð EvalImageMatrixpE1728, P0, Q0, πpP0q, πpQ0qq.

5: t Ð

Q

2 log2ppq

β log2p3q

U

6: pp Ð
`

p,N, P0, Q0, U0, V0,Mπ, t
˘

.
7: return pp

4.2.1 Key generation

As touched earlier, the key generation of SILBE constructs a long isogeny walk with starting curves
E1728. This is done to use the following proposition.

Proposition 4.2.1: [DLRW23, Proposition B.2.1]

Let ϕ : E Ñ E1 be an ℓh-isogeny obtained from a non-backtracking random ℓ-isogeny walk over
Gℓp. Then, for all ϵ Ps0, 2s, the distribution of E1 has statistical distance Opp´ϵ{2q to the uniform
distribution in the supersingular isogeny graph, provided that h ě p1 ` ϵq logℓppq.

By constructing a path of length t of 3β-isogenies ρ1, ¨ ¨ ¨ , ρt, we get that the degree of their composition
is Opp2q and the end curve distribution will be Opp´1{2q statistically close from the uniform distribution,
meaning that it will be computationally indistinguishable from an uniform random sampling. We call
the end curve EA.
We then want to compute I1, ¨ ¨ ¨ It the ideals corresponding to ρ1, ¨ ¨ ¨ , ρt. This is done using the following
recursive mechanism:
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E1728 E1 ¨ ¨ ¨ Et´1 EA
ρ1 ρ2 ρt´1 ρt

J1

Jt´1

Jt

IϕA

1. Assume knowledge of κi : E1728 Ñ Ei together with its representative ideal Ji such that npJiq is
prime and coprime to 3. Furthermore, assume knowledge of OEi a T -evaluation basis over Ei with
T ‰ 3 prime. Finally, assume knowledge of Ij with 1 ď j ď i.

2. Using KernelToIsogeny, we can construct ρi`1 and find Ei`1 and using OEi we can find Ii`1

with the KernelToIdeal.

3. Then, we have that JiIi`1 is a pO1728,OEi`1q-ideal, using RandomEquivalentIdeal, we find an
ideal Ji`1 such that npJiq ‰ npJi`1q and npJi`1q P r

?
p logppq,

?
p logppqs is prime. Furthermore,

to speed-up computations, we consider rN “
śx
i“1 pi with x minimal such that rN ě p1{4 logppq1{2

and ask for rN2 ´ npJiq to be prime and equal to 1 mod 4.

E1728 Ei

Ei`1

Ji

ρi`1
Ji`1

κi

κi`1
Ii

4. Now, using EvalTorsion over the above triangle, we evaluate κi`1 “ ϕJi`1 over xP0, Q0y “

E1728rN s. We then have constructed a HD representation of κi`1.

5. Using ConstructKani over pP0, Q0, κi`1pP0q, κi`1pQ0qq in dimension 4 thanks to Ñ , we get a
Kani’s isogeny Fi`1 and can therefore evaluate κi`1 over any points. This is then used to apply
the PushEndRing over κi`1 and Ji`1 to retrieve OEi`1

a npJi`1q-evaluation basis over Ei`1.

Using this mechanism, we compute Ii for i “ 1, ¨ ¨ ¨ , t. Additionally, we also compute OEA a npJtq-
evaluation basis of EndpEAq. To speed up the decryption part of SILBE, we useRandomEquivalentIdeal
over Jt to find another pO1728,OEAq-ideal IϕA such that N 1 ´npIϕAq232β “ 1 mod 4 and is a prime num-
ber, with N 1 “ p1 ¨

śn
i“2 p

2
i . This ensures that the EvalKani in GeneralisedLollipop is performed in

dimension 4. The reason behind the choice of N 1 and not N2 comes from the fact N2 ´ npIϕAq232β “

pN ´ npIϕAq3βqpN ` npIϕAq3βq and can therefore never be prime.

Once found, we use EvalTorsion over ρt ˝ ¨ ¨ ¨ ˝ ρ1 and I1 ¨ ¨ ¨ It to evaluate ϕA
`

P0

Q0

˘

and, using a small
subroutine based on Weil’s pairing named EvalImageMatrix, we compute the matrix MϕA

such that

ϕA
`

P0

Q0

˘

“ MϕA

`

PA
QA

˘

.
We then set EA as the public key andOEA , IϕA ,MϕA

as the secret key. We construct ρi in such a way that
our walk cannot be backwards. To do so, we use Ui, Vi a basis of Eir3

βs such that ρipEi´1r3βsq “ xViy.
As we set kerpρi`1q “ xUi ` rηi`1sViy, we have that it can be any cyclic isogeny of degree 3β except pρi.
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Algorithm 15 SILBE.KG

Input: pp “
`

p, pP0, Q0q, pV0, U0q,Mπ, t
˘

Output: pk, sk a public/secret key pair.

1: E0 Ð E1728 J0 Ð O1728 O0 Ð O1728

2: for 1 ď i ď t do
3: Sample ηi P$ Z3β .
4: Ei, ρi ÐÝ KernelToIsogeny

`

Ei´1, pUi´1 ` rηisVi´1q, 3β
˘

Ź Already in pp if i “ 1.

5: Ii ÐÝ KernelToIdeal
`

OEi´1
, pUi´1 ` rηisVi´1q

˘

6: Deterministically compute Ui, Vi a basis of Eir3
βs with xViy “ ρipEi´1r3βsq.

7: Ji ÐÝ RandomEquivalentIdealpJi´1Iiq

8: if npJiq “ npJi´1q or and rN2 ´ npJiq ‰ 1 mod 4 or is not prime do go back to line 7.
9: Si, Ti ÐÝ EvalTorsionpO1728, ρi ˝ κi´1, Ji´1Ii, id, Ji, tP0, Q0uq

10: Fi ÐÝ ConstructKani
`

npJiq, rN, rN, pP0, Q0, Si, Tiq
˘

11: OEi ÐÝ PushEndRingpO1728, κi, Jiq Ź κi Ð Fip0, 0,´, 0q3

12: IϕA ÐÝ RandomEquivalentIdeal
`

Jt
˘

13: if N 1 ´ npIϕAq232β ‰ 1 mod 4 or is not prime do go back to line 12.
14: K,L ÐÝ EvalTorsionpO1728, ρt ˝ ¨ ¨ ¨ ˝ ρ1, I1 ¨ ¨ ¨ It, 1, IϕA , P0, Q0q

15: MϕA
ÐÝ EvalImageMatrixpEt, N, Pt, Qt,K, Lq

16: pk ÐÝ
`

Et “ EA
˘

17: sk ÐÝ
`

OEt , IϕA ,MϕA

˘

18: return pk, sk.

Algorithm 16 EvalImageMatrix

Input: pE,N,P,Q,X, Y q with E a curve, N smooth integer, xP,Qy “ ErN s and X,Y P ErN s.
Output: M such that

`

X
Y

˘

“ M
`

P
Q

˘

.

1: w0 Ð eN pP,Qq

2: w1 Ð eN pP,Xq

3: w2 Ð eN pP, Y q

4: w3 Ð eN pX,Qq

5: w4 Ð eN pY,Qq

6: v1,1 Ð discretelogpw0, w3, Nq

7: v1,2 Ð discretelogpw0, w1, Nq

8: v2,1 Ð discretelogpw0, w3, Nq

9: v2,2 Ð discretelogpw0, w2, Nq

10: return

ˆ

v1,1 v1,2
v2,1 v2,2

˙

4.2.2 Encryption & decryption

Encryption

As explained, the message space of SILBE is µ2pNq “
␣

x P ZN
ˇ

ˇx2 “ 1
(

. As N “
śn
i“1 pi, we have that

|µ2pNq| “ 2n and we can furthermore construct an efficient mapping between t0, 1un and µ2pNq using the
Chinese remainder theorem. To encrypt m, Bob starts to compute a random isogeny ϕB : EA Ñ EB of
degree 3β . Then, similarly to M-SIDH, we compute the image of the N torsion points through this isogeny
and mask those points using the message m. The ciphertext is therefore EB , rmsϕBpP q, rmsϕBpQq.
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Algorithm 17 SILBE.Enc

Input: pp, pk,m “
`

p, pP0, Q0q, pV0, U0q,Mπ, t
˘

, EA with m P µ2pNq

Output: ct “ pEB , R1, R2q with R1, R2 P EBrN s.

1: PA, QA ÐÝ CanonicalTorsionBasispEA, Nq

2: UA, VA ÐÝ CanonicalTorsionBasispEA, 3
βq

3: Sample rB P$ Z3β

4: EB , ϕB ÐÝ KernelToIsogeny
`

EA, pUA ` rrBsVAq, N
˘

5:
`

R1

R2

˘

ÐÝ rmsϕB
`

PA
QA

˘

6: ct ÐÝ pEB , R1, R2q

7: return ct

Decryption

As previously stated, we use the GeneralisedLollipop over ϕB ˝ ϕA to decipher our message. Indeed,
using the torsion points in ct, we can define

`

S
T

˘

“ rmsϕB ˝ ϕA
`

P0

Q0

˘

. Theses points are easily computable
using sk as

rmsϕB ˝ ϕA

ˆ

P0

Q0

˙

“ rmsMϕA
ϕB

ˆ

PA
QA

˙

“ MϕA

ˆ

R1

R2

˙

We modify the GeneralisedLollipop algorithm of [CV23] such that it just computes kerpxϕBq and not

the whole kerp {ϕB ˝ ϕAq. This speed up the decryption.
We consider the following isogeny

ψ : EB ÝÑ E
ppq

B

ψ “ pϕB ˝ ϕAqppq ˝ ϕA ˝ ϕB “ ϕ
ppq

B ˝ ϕ
ppq

A ˝ ϕA ˝ ϕB

Using lemma 4.1.8, we can evaluate ψ over EBrN s as

ψ

ˆ

S

T

˙

“ npIϕAq3βMπ
´1π

ˆ

S

T

˙

“ npIϕAq3βMπ
´1MϕA

π

ˆ

R1

R2

˙

We then use EvalKani over ψ to evaluate pψ over E
ppq

B r3βs. Due to the nature of N 1 ´npIϕAq232β , this is
done in dimension 4. Note that it is more efficient to compute two HD-isogenies instead of three, using
the method we detailed in section 2.3.2.
We then have that pψpE

ppq

B r3βsq “ kerpψqr3βs “ kerpxϕBq. The reason comes from our good choice of
public parameters, as p´ 1 “ 0 mod 3 and thus

`

´p
3

˘

“ ´1, meaning that 3 is inert inside Zr
?

´ps and
in Zr

?
χs with χ P EndpEq a lollipop endomorphism defined as

χ “ pπ ˝ ϕ
ppq

A ˝ xϕA “ r´1sϕA ˝ π ˝ xϕA such that χ2 “ r´ppdeg ϕAq2s

We thus know kerpxϕBq, so we can thus use KernelToIsogeny to compute xϕBpR1q “ rm3βsPA and
retrieve m using the discrete logarithm over ErN s.
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Algorithm 18 SILBE.Dec

Input: pp, sk, ct “
`

p, pP0, Q0q, pV0, U0q,Mπ, t
˘

, pOEA , IϕA ,MϕA
q, pEB ,R1,R2q

Output: m

1: PA, QA ÐÝ CanonicalTorsionBasispEA, Nq

2: UB , VB ÐÝ CanonicalTorsionBasispE
ppq

B , 3βq

3:
`

S
T

˘

ÐÝ MϕA

`

R1

R2

˘

4:
`

K
L

˘

ÐÝ rnpIϕAq3βsM´1
π π

`

S
T

˘

5: G,H ÐÝ EvalKani
`

npIϕAq232β , N,N{p1, pS, T,K,Lq, UB , VB
˘

Ź pψpP q “ F pP, 0, 0, 0q1

6: xϕB ÐÝ KernelToIsogenypEB , G`H, 3βq Ź if G “ H, take G

7: return p3βq´1 ¨
`

discretelogpPA, xϕBpR1q, Nq
˘

mod N

4.2.3 Security analysis

First and foremost, we see that SILBE is not IND-CPA secure. Indeed, To distinguish between two known
message m0 and m1, we simply have to multiply R1 and R2 by m0 and use EvalKani in dimension 8. If
we are able to retrieve ϕB , then this means that the encrypted message was m0, as that would induces
that rm0sR1 “ rm2

0sϕBpP q “ ϕBpP q. Otherwise, this means that the encrypted message was m1 with
overwelming probability. That mechanism can be used to know if a ciphertext ct is the encryption of a
plaintext m or not. This induces that any adversary of SILBE can simulate the oracle OPCO. This will
be useful in the following proposition.

Proposition 4.2.2:

The security of SILBE as an OW-qPCA PKE reduces to the supersingular isogeny problem with
masked torsion point information over random curves.

Proof of Proposition 4.2.2:
Using the previously explained method to simulate OPCO, we have that

SILBE is OW-qPCA secure ðñ SILBE is OW-qCPA secure

Following proposition 4.2.1, we have that the distribution of the public key EA is Opp´1{2q close from the
uniform distribution over supersingular curves, meaning that it is computationally indistinguishable. Let
AOW´qCPA be any adversary for SILBE. We can then construct an algorithm B that solve the supersingular
isogeny problem with masked torsion point information (SSIPMTI) over random curves with the same
advantage. B is defined as such:

1. B receives as input pP,Q, S, T q with P,Q the canonical basis of ErN s and
`

S
T

˘

“ rmsφ
`

P
Q

˘

with

φ : E Ñ E1 an isogeny of degree 3β .

2. It then calls AOW-qCPA
`

E, pE1, S, T q
˘

and receive n P µ2pNq.

3. It then compute rnsS, rnsT and use EvalKani in dimension 8 over theses points to retrieve kerpφq.
As 3β is smooth, using KernelToIsogeny, it can compute φ.

We see that if AOW´qCPA succeeds, then so does B, meaning that

PrB solve the SSIPMTIs ě AdvOW-qCPApAOW-qCPAq
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l 4.2.2

Thus, under the assumption that the supersingular isogeny problem with masked torsion point informa-
tion over random curves is hard, then SILBE is OW-qPCA secure. To make it IND-qCCA in the ROM,
we can use the UM variant of the Fujisaki-Okamoto transform, as detailed in [JZC`17, section 4.2].

4.3 Updatability

SILBE is thus OW-qPCA secure and can be made IND-qCCA. We can thus construct PKE from the
generalised lollipop attack. We now make of SILBE an UPKE. The idea behind SILBE key update
mechanism comes from the fact that our key generation mechanism has two excellent properties, namely
that it can be adapted to start over any curve E, provided that we know an isogeny ϕ : E1728 Ñ E
and that finding the public key can be done by just using KernelToIsogeny, without knowledge of
ϕ : E1728 Ñ E.

4.3.1 Design

Our update mechanism is therefore an adaptation of the key generation and is done as such:

• UG: Generate a seed µ P t0, 1u4 logppq.

• Upk: Use a hash function over µ to generate a sequence of elements in Z3β . Use this sequence to
create kernels of an isogeny walk starting at the public key EA. Thanks to KernelToIsogeny, we
compute the end curve of that walk, defined as E1

A, the updated public key.

• Usk: Use a hash function over µ to generate a sequence of elements in Z3β . Use this sequence to
create kernels of an isogeny walk starting at the public key EA. Thanks to KernelToIsogeny, we
compute the end curve of that walk, defined as E1

A. Using the knowledge of ϕA : E1728 Ñ EA,
we construct, using EvalKani and RandomEquivalentIdeal an isogeny ϕ1

A : E1728 Ñ E1
A, the

updated secret key.

The underlying architecture of the key update mechanism of part of SILBE is given in figure 4.4.

E1728

EA E1 ¨ ¨ ¨ Et´1 EA
1

IϕA

I1, ρ1

Iϕ1
A

It, ρt

J1

Jt´1

I2, ρ2 It´1, ρt´1

Jt

Figure 4.4: Diagram of the key update mechanism of SILBE, Alice in red and Bob in blue.
Black isogenies are used for the construction of SILBE.Usk.
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Algorithm 19 SILBE.UG

Input: pp “
`

p, pP0, Q0q, pV0, U0q,Mπ, t
˘

Output: µ an update.

1: Sample µ P$ t0, 1u4 logppq

2: return µ

Algorithm 20 SILBE.Upk

Input: pp, pk, µ “
`

p, pP0, Q0q, pV0, U0q,Mπ, t
˘

, EA.
Output: pk1 the updated public key.

1: E0 Ð EA U0, V0 ÐÝ CanonicalTorsionBasispEA, 3
βq

2: pη1, ¨ ¨ ¨ , ηtq Ð Hpµq Ź ηi P Z3β

3: for 1 ď i ď t do
4: Ei, ρi ÐÝ KernelToIsogeny

`

Ei´1, pUi´1 ` rηisVi´1q, 3β
˘

5: Deterministically compute Ui, Vi a basis of Eir3
βs with xViy “ ρipEi´1r3βsq.

6: pk1 Ð Et “ E1
A

7: return pk1

Algorithm 21 SILBE.Usk

Input: pp, sk , µ “ pp, pP0, Q0q, pV0, U0q,Mπ, t
˘

,OEA , IϕA ,MϕA

Output: sk1 the updated secret key.

1: E0 Ð EA J0 Ð Iϕ U0, V0 Ð CanonicalTorsionBasispEA, 3
βq

2: pη1, ¨ ¨ ¨ , ηtq Ð Hpµq. Ź ηi P Z3β

3: for 1 ď i ď t do
4: Ei, ρi ÐÝ KernelToIsogeny

`

Ei´1, pUi´1 ` rηisVi´1q, 3β
˘

5: Ii ÐÝ KernelToIdeal
`

OEi´1 , pUi ` rηisViq
˘

6: Deterministically compute Ui, Vi a basis of Eir3
βs with xViy “ ρipEi´1r3βsq.

7: Ji ÐÝ RandomEquivalentIdealpJi´1Iiq

8: if npJiq “ npJi´1q or and rN2 ´ npJiq ‰ 1 mod 4 or is not prime do go back to line 7.
9: Si, Ti ÐÝ EvalTorsionpO1728, ρi ˝ κi´1, Ji´1Ii, id, Ji, P0, Q0q Ź Use Mϕ if i “ 1

10: Fi ÐÝ ConstructKanipnpJiq, rN, rN, pP0, Q0, Si, Tiqq

11: OEi ÐÝ PushEndRingpO1728, κi, Jiq Ź κi “ F p0, 0,´, 0q3

12: Iϕ1 ÐÝ RandomEquivalentIdeal
`

Jt
˘

13: if N 1 ´ npIϕ1
A

q232β ‰ 1 mod 4 or is not prime do go back to line 12.
14: K,L ÐÝ EvalTorsionpO1728, κt, Jt, id, Iϕ1 , P0, Q0q

15: Mϕ1 ÐÝ EvalImageMatrixpEt, N, Pt, Qt,K, Lq

16: sk1 ÐÝ
`

OEt , Iϕ1 ,Mϕ1

˘

17: return sk1.

To summarize SILBE:

• SILBE.Setup: We find the adequate β and N to construct a base prime p “ 3βNf ` 1 such that
p “ 3 mod 4 and N “

śn
i“1 pi with n big enough such that it resists theorem 4.1.7. We also

compute P0, Q0 a basis of ErN s and U0, V0 a basis of E1728r3βs. We compute a matrix Mπ that
represent the action of π over P0, Q0 a basis of E1728rN s.

• SILBE.KG: Sample a uniformly random isogeny ϕ : E1728 Ñ EA of degree 3βt » p2. Recover the
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endomorphism ring OEA of EA. Compute a short ideal IϕA connecting O1728 and OEA . Let ϕA be
the isogeny corresponding to IϕA . The secret key is ϕA while the public key is EA.

• SILBE.Enc: Construct an isogeny ϕB : EA Ñ EB of degree 3β . Evaluate ϕB over PA, QA the
canonical basis of EArN s and mask the image with the message m P µ2pNq. The ciphertext is the
curve EB together with the masked image of PA and QA through ϕB .

• SILBE.Dec: Using the knowledge of ϕA, we apply the GeneralisedLollipop over ϕB ˝ ϕA to

retrieve kerpxϕBq. We then evaluate xϕB over a masked image of ϕA and retrieve the message m
using discrete logarithms.

• SILBE.UG: Generate a random seed µ P t0, 1u4 logppq.

• SILBE.Upk: Hash µ to generate a sequence of elements in Z3β . Use this sequence to construct
an isogeny ρ : EA Ñ E1

A of degree 3tβ » p2. E1
A is the updated public key.

• SILBE.Usk: Hash µ to generate a sequence of elements in Z3β . Use this sequence to construct an
isogeny ρ : EA Ñ E1

A of degree 3tβ » p2. Recover the endomorphism ring OE1
A
of E1

A. Compute a
short ideal I 1

A connecting O1728 and OE1
A
. Let ϕ1

A be the isogeny corresponding to IA. The updated
secret key is ϕ1

A.

4.3.2 Security analysis

The reason behind the fact that SILBE remains secure as an UPKE comes from the fact that, in the ROM,
we have that SILBE.Upk is a one way mechanism such that the distribution of the updated public key
E1
A is statistically close from the uniform distribution and thus from the public key distribution EA given

by SILBE.KG. Therefore, any adversaries capable of breaking SILBE in the OW-qPCA-U scenario are
also inherently capable of breaking a fresh instance of SILBE in a OW-qPCA scenario. This leads us to
the following proposition.

Proposition 4.3.1

In the ROM,

SILBE is OW-qPCA secure ðñ SILBE is OW-qPCA-U secure

Therefore, under the assumption that the supersingular isogeny problem with masked torsion point
information is hard over random curves, we have that SILBE is a OW-qPCA-U secure UPKE. To make
of SILBE an IND-CCA-U UPKE, we use the transformation in [AW23, section 4]. It transforms a OW-
qCPA-U UPKE into an IND-CCA-U UPKE in the ROM.2 To do so, we need to show that SILBE is
λ-spread [AW23, definition 7] but this is a direct consequence of proposition 4.2.1 and of the fact that
3β " 2λ, as we will now show.

4.3.3 Parameters & Efficiency

Finding “SILBE-friendly” primes

As we previously explained in SILBE.Setup, our public parameters and especially the cross relation
between β and N forces N to have many prime factors. To find good N and β, we do as follows:

• If N ď 3β
?
p logppq2 » 33β{2N1{2

`

logpNq ` β logp3q
˘

, we increase the size of N .

2Using their security definition, we indeed have that SILBE is an OW-CR-CPA.
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• If Nt ě 3β{2 and n´ t ă λ, we increase the size of β.

Once we have found N and β, we find a good cofactor such that p “ 3βNf ` 1 is prime. Using this
method, we found the following parameters:

• For λ “ 128:
β “ 2043 N “ 5 ˆ 7 ˆ 11 ˆ ¨ ¨ ¨ ˆ 6863 f “ 1298

Here, N “
śn
i“1 pi with n “ 881 and p “ BNf ` 1 is 13013 bit long.

• For λ “ 192:
β “ 3229 N “ 5 ˆ 7 ˆ 11 ˆ ¨ ¨ ¨ ˆ 10789 f “ 1790

n “ 1312 and p is 20538 bit long.

• For λ “ 256:
β “ 4461 N “ 5 ˆ 7 ˆ 11 ˆ ¨ ¨ ¨ ˆ 14879 f “ 16706

n “ 1741 and p is 28346 bit long.

We see that in SILBE, we need N to have slightly less than 7λ distinct prime divisors.

Efficiency of SILBE

The main issue with SILBE is its efficiency. This essentially comes from the size of the parameters, to-
gether with performing Kani in dimension 4 with relatively large primes. For example, the number of field
operations needed to perform the HDKernelToIsogeny in SILBE.Dec is in the order of 75λ5 logpλq4,
which is, for λ “ 128, around 260. Nevertheless, we can improve the efficiency of SILBE.Usk and
SILBE.KG as follows:

• We could adapt the RigorousDoublePath [DLRW23, Algorithm 12] and replace Kani’s Lemma
by the KLPT for key generation and update mechanism. This would nevertheless require a change
of prime p, as we would need for p to be of the form p “ 3βF `1 such that N |p2 ´1 with N ě p3{2.
This is very similar to the primes used in SQISign [FKL`20]. Finding such primes would be difficult,
which is the reason we choose to present SILBE.Upk using HD isogenies.

• We could also speed up the key generation by reusing KaniDoublePath to directly construct an
isogeny ϕA : E1728 Ñ EA, this would nevertheless require additional assumption to ensure that the
distribution is computationally indistinguishable from uniform.

Additionally, due to the size of p, we see that we can shorten the length of our path such that our
distribution is not Opp´1{2q -statistically close from uniform, but just Op2´λq, which would be sufficient.
Finally, to finish this chapter, we would like to highlight the fact that our update mechanism could be
slightly changed to not require a hash function. This comes from the fact that our update mechanism is
very similar to the CGL hash function [CGL06]. We can thus adapt [CGL06, section 5] and get that the
problem of finding µ such that SILBE.UpkpE,µq “ E1 reduces to isogeny walk problem and thus that
our key update mechanism is one-way. Nevertheless, we would require some modifications of the public
key as we would have to add Vt P EAr3βs such that xVty “ ρtpEt´1r3βsq to ensure that the update long
isogeny is not backtracking. To keep the same security level, we would also need to compute a slightly
longer isogeny.
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Future directions

With the completion of chapters 3 and 4, the presentation of SQIPrime and SILBE marks the conclusion
of this thesis. These two mechanisms, being distinct in nature, lead to different avenues for further
exploration.
For SQIPrime, the logical next step involves a practical implementation of the scheme. Implementing
SQIPrime would not only validate its theoretical underpinnings but also provide a platform to assess its
efficiency. Additionally, an aspect deserving further scrutiny is the thorough exploration and refinements
of assumption 3.2.1.
In the case of SILBE, an intriguing avenue for research lies in investigating whether its underlying
principles can be extended to other cryptographic protocols vulnerable to generalized lollipop attacks,
such as FESTA. Exploring this application could potentially enhance SILBE’s efficiency.
On a more general note, a pivotal question for exploration is the refinement of HDKernelToIsogeny.
While its results over a prime ℓ currently align with Vélu’s formulas, there certainly exists opportunity
for improvement. An avenue to explore is the construction of a higher-dimensional analog akin to

?
élu

[BFLS20]. This exploration could shed light on novel possibilities to use HD-isogenies in Isogeny Based
Cryptography.
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