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Introduction

ABSTRACT:

This master thesis is dedicated to the study of the MU spectrum. To do so, it will first define spectra in ho-
motopy theory and proving Brown’s representation theorem. Then, it will study vector bundles, more precisely
universal ones and their consequences on complex bordism. Finally, it will have a look at multiplicative structure
on spectrum and the induced computation.

Quand on sait 0w I'on va, on va rarement trés loinll]

This quote is a rather appropriate depiction of this master thesis. Indeed, despite its relatively
intimidating length (at least compared to similar paper on the topic), this thesis covers some-
what “basic” questions and notions in its field, something apparent from the fact that most
of the important theorems dates back from the 50’s into the late 80’s. But what this master
project lacks in scope, it makes up in details and rigour as it is as complete as possible while in
the framework of this master project.

To do so, this master thesis is decomposed into 4 chapters and a small appendix:

1. In General Reminders, we define properly basic notions that will be used throughout this
paper, from pointed topological space and homotopy to CW complexes and (co)homology.
For every interesting and important theorems, we quote the proofs in some references.
They are fantastic reads to further our understanding on subjects that we have overlooked
in this chapter as it is not the core of our paper.

2. The goal of Spectra is solely to define the central framework of our work, i.e. spectra (in
the algebraic topology meaning of the word spectra). From its simplest definition, we will
construct its category, its homotopy and shed light on many of its underlying structures.
Then, we will investigate its first application by studying Brown’s representation theorem.

3. In Vector Bundles and MU, we take somewhat of a break from spectra to study vector
bundles, complex ones to be exact. Doing this, we define the Thom space and therefore
finally define MU. To understand its importance, we will have a look at the notion

'René Thom



of universal bundle. Then, we will interest ourselves to a very interesting link between
manifolds and MU using Thom-Pontrjagin construction.

4. Multiplicative Structures is dedicated to the study of multiplicative structures on
cohomology and on spectra. Using those structures, it also studies the notion of orientation
on a ring spectrum. Then, to use all of our previous theoretical constructions, we will
compute cohomology of MU.

5. Finally, in the appendix To go further in the study of MU, we give further interesting
properties of MU that we had not the time to further develop.

We will taking as a given that the reader is familiar with the following mathematical fields:
e Category theory, as defined in [ML13] first chapters.
e General topology, as defined in [Breld] first chapter.
e Manifolds, as defined in [tDO8| chapter 15 and [Kos13] chapter 1-4.
e Algebraic Topology, especially singular (co)homology as in [tDO§| chapter 9 and 17.

Have a nice and pleasant reading.
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Chapter 1

(General Reminders

Before going into the meat of this paper, we need to remind ourselves of many structures and
results that will be building blocks of all our further work. We especially give here reminders
on homotopy, (co)homology and CW complexes. The laters, being introduced during the 50s,
are now mainstays of algebraic topology. We will explain why when working on them.

1.1 Pointed Spaces

In this paper, we will mainly work on the category of pointed topological space.

Definition 1.1.1 (Pointed Spaces).
We define the category of pointed topological spaces noted Top.

Ob(Top.) = {(X7 x0)| X is a topological space and xqy € X}

Top. (X, y0), (V:0)) = {f : X — Y| f continuous and f(zo) = o}

This category is very similar to the one of topological space, Top. In fact, there is an adjunction
between the two category using the following functor.

Definition 1.1.2 ((—)* functor ).
(—)" : Top — Top.
Xt = (X u*, %)
fr=fux



The (=) functor is left adjoint with the forgetful functor. That is to say

TOp.(X+, (K yO)) = TOp(X, Y)

From now on, we will drop writing the base point for pointed spaces when it is clear from
context.

Likewise to 1 and x in Top or @ and ® in M (R) (the module category on a ring), we define
on Top, two types of product.

Definition 1.1.3 (Smash Product).
Let (X, x0), (Y,y0) € Ob(Top.), we define the smash product of X andY

XAY=XxY/.

with (‘T7y0) ~ (‘7;07?/)‘
We give X A'Y the quotient topology. (X A'Y,[zo,yo]) € Ob(Top.).

Definition 1.1.4 (Wedge Product).
Let {(X*, z‘8‘)}a € Ob(Top.), we define the wedge product of { X}, as

\/Xa ={xe€ HXQ,XO‘ = x5 all but one time}
(0% (0%
We give \/, X* the subset topology of [ [, X*. (Vo X%, (z)a) € Ob(Top.)
Notation 1.1.5.
We see that the equivalence class of [xo,y0] € X AY is just X vY. We thus can write the smash

product as the quotient set

XAY=XxY/XVvY

Proposition 1.1.6.
Let X, Y, Z € Ob(Top.) be locally compact Hausdorff spaces, then smash product is associative

XAYANZD)=(XAY)AZ

(VX AY = \/(X*rY)



Furthermore, we see that A and v are extension of L and X in Top., meaning
Xt AYt > (X xY)F

XtvYtx(Xuy)?*
Now, we consider cones and suspension. Those are a central notion in homotopy theory.

Definition 1.1.7 (Cones).
Let (X, z0) € Ob(Top.), I = ([0,1],0) we define the cone of X

CX=XAnI
Now, let f € Top, ((X, zp), (Y, y0)>, we define the mapping cone of f
YurCX =(CXuY/., {+})

with (z,1) ~ f(x)

Notation 1.1.8.
If f =« the standard inclusion from A into X with same base point, we write X vy CA as
XulCA

Definition 1.1.9 (Cofibre sequence).
We name any sequence

xLysyo,ox

a cofibre sequence.



Definition 1.1.10 (Suspension).
Let (X, x0), (Y,y0) € Ob(Tope), f € Tope(X,Y). We define the suspension space of X as

SX =X x It/

with (zg,a) ~ (zo,b), (,0) ~ (y,0) and (z,1) ~ (y,1) with base point given by [zo,a].
This in fact gives us the suspension functor

> : Tope — Tope
Y(X,x0) = XX
Ef(xvt) = (f(I)’t)

Proposition 1.1.11.
YX 2CXux(CX
»S" = gl
YX =X A S
SPX 2 X A ST

1.2 Homotopy

Now that we have define Top,, we have all tools needed to define homotopy on Top,. Thanks
to suspension ¥ and smash product — A —, it has more properties than the usual homotopy on
Top, making it more interesting to study.

Definition 1.2.1 (Homotopy).
Let f,g € Top, (X, Y). We say that f is homotopic to g (f ~pom g) if and only if

IH € Top.(X A IT,Y) such that H(x,0) = f,H(x,1) =g



Definition 1.2.2 (Homotopy equivalence).
Let X, Y € Ob(Top.). We say that X is homotopically equivalent to Y if If €
Top.(X,Y), g € Top.(Y, X) such that

gof ~Hom idefog ~Hom ZdY

Proposition 1.2.3.
Homotopy and homotopy equivalence are equivalence relations.

Now that we have a definition of homotopy, we want to give it more structure. A way to do it
is by using H-cogroup.

Definition 1.2.4 (H-cogroup).
We define an H-cogroup as a K € Ob(Top.) equip with co-multiplication p: K — K v K and
twverse map v : K — K such that:

e Consider (id, ko) : K v K — K, (id, ko)(k, ko) = k, (id, ko)(ko, k) = ko. We muss have
that the following diagram:

i # id
K
is commutative up to homotopy.
o The following diagram
KvKvEKkK v id Kv K
id v [ K
Kv K m K

15 commutative up to homotopy.



o The following diagram

K (id,vaK!u,id@ K

ko H 0
K
is commutative up to homotopy.

o We say that K is an H-commutative cogroup if p and poT are homotopic. T : K v K =
Kv K. T(z,y) = (y,).

Note that there also exists a notion of cogroup that is the same expect diagram commute
strictly. Similarly, there exists a notion of H-group, where the multiplication is associative up
to homotopy.

Now, we consider the central example of H-cogroup.

Example 1.2.5.
VX € Ob(Top.), (XX, 1/, V) form an H-cogroup. with

piEX - 3X vEX

/ - ([x,2t],20) O<t<}
M([x,t])—{ (w0, [2,2t—1]) L<t<1
Vi¥xX 5 ¥X

I//([l',t]) = [$, 1- t]
Furthermore, if X = S* with k > 1. Then (XX, i/, V') form a commutative H-cogroup.

Notation 1.2.6.

[Xa Y] = Top. (Xa Y)/~Hom
n(X) = [S", X],n e N

Using previous exzample and the fact that SPT1 = $.S™, we have that m,(X) can be given the
structure of a group (for n = 1) using multiplication given by the following sequence

DU IS S S BV ST~ s BEALND 'GVID N e

Now, we have to see that function on Top, induce transformation on homotopy sets.

10



Definition 1.2.7 (Pullback & pushforward).
Let X,Y,Z € Ob(Top.), f € Top.(X,Y), we define the pushforward of f

fe 12, X] = [2,Y]

f*([h]) = [foh]

and the pullback of f
fFeY,z] - [X, Z]

F*([n]) = [ho f]
See that (fog)x = fx0gs and (fog)* = g* o f*

We now define a central notion in homotopy theory.

Definition 1.2.8 (Weak homotopy equivalences).
Let f € Top,(X,Y). We say that f is a weak homotopy equivalence if Yn € N

fo i mn(X) = mp(Y)

X and Y are said to be weakly homotopically equivalent if there exists such a f €
Top,(X,Y) or in Top,(Y, X).

Note that thanks to how we defined our group law, we get that f. is a group isomorphism.

Proposition 1.2.9.
Weak homotopy equivalence is not an equivalence relation. But, if f : X — Y is a weak
homotopical map and f ~om g, then so is g.

The proof of is analogous to the one for spectra [2.1.21] It is thus omitted.

11



We now define the 2 functor.

Definition 1.2.10 (Q functor).
Let X € Ob(Top.), we define the following pointed topological set

0X = HomTop.(Sl,X)
Because VY € Ob(Top.), Hom(Y, —) is a functor, then so is Q. Vf € Top(X,Y)
Q : Top, — Top,

QX) =0X
fx=Qf 1 QX - QY
Furthermore, using the exponential law ([Swil7], 0.13), we get that

Q"X = Hom(S™, X).

. Note that Q has an equivalent in Top written as LX, but with fewer good properties. (For
example, it isn’t an H-group).
Now, we define the homotopy categories on Top, as follows.

Definition 1.2.11 (Homotopy Categories).
We define both naive homotopy category HTop, and homotopy category of pointed spaces
HoTop.

Ob(HTop,.) = Ob(Top.)

HTop.(X,Y) = [X,Y]
Ob(HoTop.) = Ob(Top.)
HoTop.(X,Y) = [X,Y][W™}]
where [X,Y][W™!] is the set [X,Y] localised on the class W of all weak equivalences. This

means that we add an abstract inverse f~1 for every weak equivalence map f:Y — XE|

In the category HTop,, isomorphisms are equivalence maps and in HoTop,, isomorphisms are
generated by weak equivalences and their abstract inverses.

'also written as Top.(S*, X)
*Further details about Homotopy models can be found in [DS95].
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Remark 1.2.12.
Y. and () naturally extend both into functors from HTop, to HTop, and into functors from
HoTop. to HoTop.

1.3 Homology & Cohomology

We can now define homology and cohomology on Top,. To be exact, we define generalised
reduced (co)homology. Historically speaking, homology was create as a way to ease the compu-
tation of homotopy, but has then developed itself into a new and vast field.

Definition 1.3.1 (Reduced Homology Theory).
A family {H,, : HTops — Ab},cz of functors and natural equivalences {oy, : Hy, — H, 110X} ez
18 called a reduced homology theory H, if:

o V(A ,x9) c (X,20), i: A— X standard inclusion and j : X - X u CA, then

Hn (7) Hn(j)

Hn(A) Hn(X) Hn(X v CA)

1s exact.

Homology theory can also follows some further properties, named axioms.
Likewise to set theory, in homotopy theory, we want to understand the structure of our homology
theory, knowing that it follows some axioms.

Definition 1.3.2 (Axioms of Reduced Homology Theory).

o Wedge axiom: V{(Xa, o)l € A} and inclusion io : Xo < \/gc 4 Xp, then Vn € Z, we
get

®aHn(ia) : DaHn(Xa) = Hn(\/ Xp)
BEA

e Weak Homotopy Equivalence (WHE) axiom: If f : X — Y is a weak homotopy
equivalence, then Yn € 7Z, we have that

Hn(f) : Hn(Xa 1‘0) = Hn(x yO)'

13



Remark 1.3.3.

Using mapping cylinder (full details are analogous in , we can assure that every cofibre
sequence (defined in is homotopically equivalent to another one with simple inclusion.
Thus, for any cofibre sequence,

0, g.(X vy CA)

is exact.

In this paper, we will mainly work on the dual of homology, named cohomology.

Definition 1.3.4 (Reduced cohomology theory).
A family {H™ : HTops — Ab},cz of contravariant functors and natural equivalences {o™ :
H" ' oY — H"},cz is called a reduced cohomology theory H* if:

o V(A ,x9) € (X,x0), i: A— X standard inclusion and j: X - X u CA, then

a(4) L9 grx) K9 gnix o ca)

1s exact.

Likewise to homology, it also as some axioms

Definition 1.3.5 (Axioms of Reduced Cohomology Theory).

o Wedge axiom: V{(Xa,za)|lo € A} and inclusion iq : Xo — \/gcp X, then Vn € Z, we
get
H"(ia) : H*(\/ Xp) = @ H"(Xa)
BeEA

e Weak Homotopy Equivalence (WHE) axiom: If f : X — Y is a weak homotopy
equivalence, then Yn € Z, we have that

H™f) - HMY, yo) = H"(X, o).

14



Remark 1.3.6.
We see that if (co)homology H.(H™*) satisfy the WHE axiom, then they can be fully defined as
functors (contravariant functors)

H, : HoTop, — Ab

H* : HoTop. — Ab

Definition 1.3.7 (Unreduced (co)homology).

In this paper, we will work mainly on reduced (co)homology, but there exists a dual notion on
unpointed topological space, named unreduced (co)homology.

Let H* be a reduced cohomology, we define the dual unreduced cohomology H* as

H*(X) = H*(X™")
Let H* be an unreduced cohomology, we define the dual reduced cohomology H* as given by
H*(X) @ H*(x) ~ H*(X)
This is because of the cofibre sequence

SO xt X

All those definitions gives us many important and interesting results. One of them will be useful
later in this paper E], so we give it here.

Proposition 1.3.8.
Let H* be a reduced cohomologyEl that follow the weak homotopy axiom, then, for any A1, As ¢ X
with Ay v Ay = X and 1 € H*(Ay),x9 € H*(A2) such that

H*(ia104,)(71) = H*(14,14,)(22).

Then, 3y € H*(X) such that H*(ia,)(y) = x1, H*(i4,)(y) = x2.

3More precisely in the construction of a representation of cohomology using Brown theorem [2.2.16
4A similar result to proposition also exists for reduced homology

15



We also define applications between (co)homology. Because (co)homotopy are functors, theses
are natural transformations with a bit more structure.

Definition 1.3.9 (Natural Transformation of (co)homology).

A natural transformation Ty : h, — k. between reduced homology theories ( T* : h* — k*
between reduced cohomology theories) is a collection of natural transformations T, : hy, — ky,
(T" : h" — k™) such that YX € Ob(Top.), the following diagram commute:

i (X)) =—F—= hpp 11 (ZX) W (X) ————h""1(3X)
Tn(X) Th+1(2X) ™(X) T™(2X)
kn(X) % kn1(ZX) k" (X) — EPtH(EX)

Ty (T*) is a natural equivalence of reduced (co)homology theories if each T,, (T") is a
natural equivalence, n € 7.

1.4 CW-Complexes

Now, we have a small problem. It occurs that many interesting properties in homotopy theory
work only on weak homotopy theory. But HoTop, is a category not very practical to use.
Thankfully, J. H. C. Whitehead has, during the 50s, define an object that is such a nice and
powerful solution to this problem that it has become the basic ground of all following algebraic
topological. Those are CW-complexes!

In all this part, let X be Hausdorff.

Definition 1.4.1 (Cell-complexes).
A cell-complex K on (X,x0) is a collection of subsets of X construct by induction on the
n-skeleton K":

o K~' = {zo}

e Vn e N, we consider f, : S" ' — K" 1. Then, we define cells of dimention n e as
subspace of X that are equivalent to D™ glued to K"~ along their boundary using fa.

This means that their interior are homeomorphic and fo : S*~1 — 0e?

16



To be a cell-complex of X, K must also follows the following properties:
1. X = Unena €a- (it is usually noted |K|)
2. épneR # O =n=m,a=p. (withé, = int(ey))

A subcomplexr K' < K is a cell-complex such that K < K™. It may not necessary be the

whole space X .
We also define K™ = K™\ K"
Finally, we say a cell-complex is finite if it as finitely many cells.

Definition 1.4.2 (CW-complexes).
A CW-complex is a cell complex K on X such that:

e C) K is closure-finite. i.e:

eq N eg = except on finitely many occasions.

e W) X has the weak topology induced by K. i.e:

S c X is closed < VneN,aeJ,,Sney, is closed in e,

We usually don’t distinguish between X and the complex K.

Proposition 1.4.3 (CW-subcomplexes).
Let X be a CW-complex and'Y a cell subcomplex, then'Y is also a CW-complex with |Y| closed
in | X|

Remark 1.4.4.
CW complexes have a very interesting property. For any k € N, using skeleton, the sequence

Xk Y Xk+1 — \/S?”L+1
(6%
«

is a cofibre sequence.

17



As per usual, we also need to define maps between CW-complexes.

Definition 1.4.5 (Cellular Maps).
Let X, Y be CW-complexes, f: X — Y a continuous map is said cellular if Vne N f(X") c Y™

Because CW complexes are pointed topological subset, we need to ask ourselves how our previous
construction behave.

Proposition 1.4.6 (Properties of the smash/wedge product on CW-complexes).

o VXY CW-complexes, X AY 1is also a CW-complex with

(X AY)™ = U x@ Ay

it+j=n

The smash product is associative on CW-complex.

Let f: X > Z, g:Y — V be cellular maps, then fAg: X AY — Z AV is also cellular.

V Xo CW-complexes \/, Xo is also a CW-complex with
OV %)™ = | xg

Let fo: Xo — Yo be cellular maps, then \/,, fo : Vo Xa = V4 Ya is also cellular.

We see that thanks to this result, homotopy is well defined on CW complexes, seeing it as a
restriction of homotopy on Top,.

Now, a reasonable question is to consider the difference between continuous functions and cellular
maps between CW-complexes. The following theorem answer our question.

Theorem 1.4.7 (Cellular Approximation Theorem).
Let X, Y be CW-complexes.

Vf: X =Y continuous, 3g : X — Y cellular such that f ~gom g

A proof is given in [Hat02], page 349, Theorem 4.8.

18



This theorem gives us that we don’t lose any information on homotopy of CW by looking only
at cellular maps. Thus, we define their category.

Definition 1.4.8 (CW category).
We define the category of CW complezes CW

Ob(CW) = {X| X is a CW-complex }

CW(X,Y)={f:X > Y cellular maps }

Proposition 1.4.9.
Y. can also be seen as a functor from CW to CW

YX =X A St

Zf = f A idsl
We now ask ourselves what is the structure of Hom(X,Y) with X,Y € Ob(CW) ?

Theorem 1.4.10 (Milnor’s Theorem).
Let X,Y be CW-complezes. Then, if X is finite, Hom(X,Y') is homotopically equivalent to a
CW complex.

This was proven in the following article [Mil59].

Corollary 1.4.11.
From theorem|1.4.10, we get that
Q:CW - CW

18 a well defined functor.

19



Now, another question we have is how big is CW compared Top, 7

Theorem 1.4.12 (CW-Approximation Theorem).

V(X,z0) € Tops,3Y € CW, f : Y — X a weak homotopy equivalence

A proof can be found in [Hat02], page 352.

From the theorem [1.4.12] and proposition , we get that we can define the homotopy on
CW the same way as for Top,. We also define [X,Y] and homotopy equivalence similarly to
Top,.

Definition 1.4.13 (CW-Homotopy Category).
We define the CW-Homotopy Category HoCW :

Ob(HoCW) = Ob(CW)

HoCW (X,Y) = [X,Y]

From this definition, we have that > and 2 are still well defined functors on HoCW. Further-
more, we have that HoCW inherit of some properties of HTop,. Namely

Lemma 1.4.14.
Let X,Y,Z € CW such that Y is finite. Then, there is a natural equivalence

A:[XAY, Z] = [X,Hom(Y, Z)]

~ ~

A([f (@, 9)]) = [F(@)], f(2)(y) = f(2,9)

Proof in [SwilT7], 2.5 page 12.

Corollary 1.4.15.
From the previous lemma|1.4.14), we get that

A:[SX,Y] = [X,QY]

i.e. 3 and §) are respectively left and right adjoint functors in HoCW.

20



Lemma 1.4.16 (Homotopy extension property).
Let X, A,Y € Ob(CW) such that Ac X. Let F: X - Y andg: A —Y such that F|a ~Hom ¢-
Then, 3G : X — Y such that G|a = g and F ~gom G.

Some proof can be found in [Hat02], page 14.

Now, if we have seen that CW has a lot of very interesting properties, the following theorem is
what makes it a very fundamental category in Homotopy Theory.

Theorem 1.4.17 (Whitehead theorem).
Let X,Y € CW, f € Top.(X,Y).

f: X =Y is a weak homotopy equivalence <= f is an homotopy equivalence.

[Hat02], page 346, Theorem 4.5, [Swil7], 6.32 page 89.

Corollary 1.4.18.

HoTop, ~ HoCW

By ~, we mean that those two categories are equivalents, as described in [ML15], page 18.

This means that we have an equivalent category were all morphism are maps between sets.

Also, we see that we can thus write any reduced Homology and Cohomology that follows the
weak homotopy equivalence axiom as functors and contravariant functors from HoCW — Ab.
This refinement gives us some very powerful properties:

Theorem 1.4.19.
Let { X, }nen be a sequence of CW complexes that inject into one others. Let X = colim,X,.
Then

{(tn)s}: colimymp(X,) = mp(X)

The proof of this theorem can be found in [Swil7], 7.52.

21



Theorem 1.4.20.
Let { X, }nen be a sequence of CW complexes that inject into one others, H, be a reduced homol-
ogy. Let X = colim, X,,. Then

{Hy(tn)}: colim,Hy (X)) = Hyo(X)

The proof of this theorem can be found in [Swil7], 7.53.
Interestingly, this theorem is not as strait-forward when considering colimit and cohomology.

Theorem 1.4.21.

Let { X, }nen be a sequence of CW complexes that inject into one others using jn : Xp < Xpi1.
Let also H* be a reduced cohomology that follows the wedge axiom. Let X = colim,X,,. Then,
we have the following short exact sequence:

{H9(in)}

1
0 — lim H71(X,,) — HY(X) lim, H1(X,,) — 0

with lim' H9=1(X,,) = coker()

o: [[HY(X) - [ [ HY(X0)

neN neN

8(f(n)) = (=1)"f(n) + (=1)" 53 (f(n + 1))
with f € [ Ten HY(X0).

A proof is given in [Swil7], 7.66.

Corollary 1.4.22 (Mittag-Leffler criterion).
Let {X,,} be a sequence of CW complexes that inject into one others using jn : X < Xp41. Let
also H* be a reduced cohomology that follows the wedge aziom. We note ji* : X;, — X, m >n
the composition jm,—1 00 jp.
If for any n € N, AN such that Ym = N,

()" (H(Xm)) = ()" (HU(Xn))

Then, lim} HY(X,) = 0.
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Remark 1.4.23.
Using previous definition of lim!, let { X nens {Yn nen, {Zn tnen be sequence of CW complexes
that inject into one others and with maps

On Xn > Y,
Y i Zp — X
that agrees with each others. If Vn € N, we have the s.e.s
¢* ’L/)*
0— HYY,) — HYX,) — HYZ,) — 0

Then, using snake lemma, we get the exact sequence

0— lim,HY(Y,) — lim,HY(X,)— lim,HY(Z,) — hqu( n) — hran( n) — hqu(Z)—>O

Full details in [Swil7], 7.63.

Theorem 1.4.24 (Whitehead cohomology theorem).
Let T* : k* — h™* be a natural transformation of cohomologgﬂ theories satisfying the wedge axiom

on HoCWEl . IFTY(SY) : k9(S%) — h9(S°) is an isomorphism for ¢ < n and an epimorphism
for g =n, then, YX € Ob(CW)
TYX) : k9(X) - hi(X)

18 an isomorphism for ¢ < n and an epimorphism for ¢ = n.

A proof is given in [Swil7], 7.67.

A similar result exist also for natural transformation of homology. See [Swil7] 7.50.
SThat is to say, it follows the weak homotopy equivalence axiom.
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Chapter 2

Spectra

Now that we have reminded ourselves about homotopy, homology and CW-complexes, we can
finally work on a definition of spectra. Historically speaking, they were introduced at the start
of the 60s by Elon Lages Lima and refine by George W. Whitehead and J. Michael Boardman.
They were initially defined as a way to give a proper category to computation like but
have since developed into their own field.

If in the first section, we will give a proper definition of spectra, we will also consider their
immediate properties. Then, we will work during the second section on Brown’s representation
theorem, a result that link cohomology and spectra.

2.1 General Structure

This section will be divided in 4 subparts. In the first, we will build a solid definition of the
spectra category. In the second one, we will show that spectra preserves many results of CW
complexes. The third will be dedicated to group structure and in the final one we will show that
spectra are an handy way to define (co)homology.

2.1.1 Definitions

Definition 2.1.1 (Spectra).
A spectrum E is a collection {Ep}nez, of CW complezes with injective singular maps

DPn: XE, — Eny1.

A subspectrum F c E is a subcollection F,, ¢ E,, such that p,(XF,) < F+1
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Pn+2

pn+1)l\

Pn+1© Epn(EQEn)

Pn+1 (En+1 )
En+2

Pn(EE,)

En+1

—a0

Figure 2.1: Representation of a Spectra

Example 2.1.2.
o Let X be a CW-complex. We define X% (X) as:

EOO(X):{ zii;g Z;g

e We name this space if X = S° as ¥°(S°) =S

S:{ {x} n<0

S"™ n=0

e We define the spectrum U as U, = \/ 1=y S* with LU, = \/;=; S° < Up11. It is interesting
in the fact that it is rather counterintuitive, because it doesn’t grow.

Notation 2.1.3. In order to shorten notations, we will write p, 0% as X' when it is clear from
context.
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Similarly to CW, spectra also have cells.

Definition 2.1.4 (Cells in spectra).
Let E be a spectra and let el be a d-cell on E,, then ¥'ed is a d + 1-cell of E, 11 and so on.
Then, going backward at most d time gives us eﬁl, (with n = n' +d — d') with n' minimal. We

thus define the cells on a spectrum as the following sequence:

/ / ’
€ = (GZ/, E,e;il/, 2/267%/, te )

Definition 2.1.5 (Size of a spectra).
We define the size of a spectrum E as size(E) = number of cells of E.
A spectrum E is called finite if it size is finite. It is countable if it size is countable.

Also similarly to CW, spectrum have an analog to skeleton, called layers.

Definition 2.1.6 (Layers).
We define the layers E™ of a spectrum E by working with cells of E and using the following
notion

l(e) = min{size(F)| F is a finite subspectrum of E,e € F'}

E" = U e
l(e)<n

The following lemma lower somewhat the requirement needed to construct a spectrum. It is a
very handy tool.

Lemma 2.1.7.
Let {E,,, pn}nez be a collection of CW-complexes with cellular maps p, : XE,, — E,+1. Then,
we can construct a spectrum E' and homotopy equivalences ry, : E!, — E,, such that the following
diagram commute

LB, —

n

Yiry, T'n+1

SE, — s Fo
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Proof of Lemma [2.1.7]
Let E], be of the following form:

E, =E,A{n}t O | | " By A [k K+ 1. neZ
k<n
with [z, k + 1] ~ [ 1pe(2), k + 1].
First, we see that
SE =SE, a{n}t o | | ZVFEL A [k E+ 11T < YRR A [k k+ 1] < E
n /~ /~ n+1
k<n k<n+1

We define 1, : E, — E,, as :
ro([z,t]) = pn—103pp_20---0 skl w(2) with [z,t] € YR B A [k, k+1]F
It is well defined: indeed, if t = k + 1, by the definition of r,, it is the same. Furthermore, if

t = n, then, r,([z,t]) = .
Furthermore, we define i,, : £, — EJ,

in(r) =[x,n] € E, A {n}" < E},

Then, r, 0 in(z) = rn([2,n]) = 2 so 1, 0@y = idE,. Now, let’s show i, 0 7 ~Hom idEr,
We define H : E), A IT — EJ,

[Enimpm—l o Enfm+1pm_2 0---0 Enfkflpk(x)7 (1 _ S)t + sn]
H([z,t],s) = { with [z,t]e S" *Ep k<nm<(1—s)t+sn<m+1,k<m<n.
[z,n] for [x,t] € By A {n}™T.
It is well defined similarly to r, with H oig = idg; and H oiy =i, 01y
Now, let’s show that 7“”4_1’21% = pp © Xry. This comes directly

P o Sra([2,4]) 4 Fpn 0 Spno1 0 X2 pp_n 0+ 0 B p_i(2) = rasalem,

Then, by considering {E/,,c} = E’, we have our spectra.
Oe1ad

This lemma is usually used to define a sub-category of spectra (named CW-spectra) where
YE, € E,+1. It can be proven using that this subcategory is homotopically equivalent to
the category of spectra. To somewhat streamline this paper, we won’t study it in details.

Now, we will construct morphism between spectra. A first way to do it is as follows

Definition 2.1.8 (Functions on spectra).
Let E,F be spectra. A function f : E — F is a collection of cellular maps
{fn: En — F,}nez such that:

fnsiloe, =2 fn

Ywith [z,k + 1] € S FE, A [k, k+ 1] and [ pp(z), b+ 1] e S * 1B A [k + 1,k + 2],
Zbecause X is a functor
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Sadly, functions on spectra are too strict of a definition to have all the properties we desire.
Indeed, if we see spectrum as sort of colimit, then we don’t need to know where something is at
every time, but just where it will be at some point.

To get this result, we need work a bit on what are called cofinal subspectra.

Definition 2.1.9 (Cofinal subspectra).
Let E be a spectrum, F' < E a subspectrum is called cofinal if Ve, € E,,dm such that
Y'™Me, € Fyim.

Lemma 2.1.10.
o Let F,G be two cofinal subspectra of E, then F' n G is also a cofinal subspectrum of E.

o Let G be a cofinal subspectrum of F, itself a cofinal subspectrum of E, then G is a cofinal
subspectrum of E.

o Arbitrary unions of subspectra with at least one cofinal are cofinal subspectra.

Proof of Lemma [2.1.10}
e First, we see that if I, G are subspectra, then so does F' n G. Indeed

Y(FANG)y=YF,nYG, S Fuy1 0 Gpi1 = (F 0 Gyt

Now, F n G is cofinal. Indeed, if ¥"™(e,) € Fyym, then Yk € N, X" % (e.) € Fpman-
Thus, Ve, € E,, using m = max(m, mg) with m; given by respective cofinality of F and
G, we get

Y™ € Frim 0 Gram = (F 0 G)pam

e First, we see that G is a subspectra of E, indeed

E/Gn o Fn+1 - En—i—l

Secondly, Ve, € E,, using m = mj + ms with m; given by cofinality of F' in F and mso
given by cofinality of F' in F on the cell (X, ), we get that:

YMe, = X" 0¥ e, € Grim

o | J,o; F" is a subspectra because:

Y(JF)n =¥ Fi | JFivr = (JF)nna

iel el i€l el

Furthermore, it is cofinal using m given by the cofinal subspectra.

28



2110

We now can define what we call maps of spectra.

Definition 2.1.11 (Maps of spectra).
Let E, F be spectra. We consider the following set S

S = {(E’,f’)\ E' is a cofinal subspectra of E, f' : B — F}
We define a equivalence relation on S':
(E',f') ~ (E", f") < 3(E, f) € S,E c E' n E"is a cofinal subspectra and f = flg =g
We define a map from E into F as the equivalence class [E', f'] and we define

Hom(E,F) =5/~

Verification of Definition [2.1.11

This is indeed an equivalence relation. We show the associativity. Consider (E', f') ~ (E”, f")

using (E1, f1) and (E”, ") ~ (E", f") using (B2, f2).

Then consider (E1 N Ea, f"|5 \5,) €S-
EynEyc E'nE"nE"cE nE"

! 1 "
Heni, = Nla, = Meng, = P2l = 5 a5
So it give us that (E', f) ~ (E', f")
(] ZTIn

It is not apparent that maps can be composed with each other. To do so, we will need the
following lemma.

Lemma 2.1.12.
Let E, F be spectra and f : E — F a function. If F' < F is a cofinal subspectrum, then IE' ¢ E
a cofinal subspectrum such that f(E') < F’.

Proof of Lemma[2.1.12

Let S be the set of all subspectra G < E such that f(G) € F'. Let E' = |J;.gG. Then E' is a
subspectrum of F with f(E’) ¢ F’. Let’s show it is cofinal.

Consider e, € E,,. Let e, € e a cell of . Then consider V' the finite subspectra of E such that
ee Vﬁ Then, we have that f(V') is therefore a finite subspectra of F'.

3We can always find such a spectrum by induction using the closure finite and using skeleton
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Then, there exists M such that f(Vas) < Fa. Then, VM = { :/. Zi% is such that
n =
f(VEMY <« F' Thus, VM < E'| proving the cofinality.

J2II2

Corollary 2.1.13.
We can composed maps of spectra.

Proof of Corollary[2.1.13
Let E,F,G be spectra and let [E', f] € Hom(E,F),[F',g] € Hom(F,G). Then, consider

f: E' — F. Using lemma [2.1.12| on F’ | we get that IE” a cofinal subspectra of E’ and thus
E such that f(E") < F' ([E”, f|g] = [E’, f]). Therefore, we define the composition of spectral
maps:

Hom(F,G) x Hom(E,F) — Hom(E,G)
[Flag] © [Elvf] = [Ellag © f|E"]

It is well defined. Indeed, take (E', f) ~ (E", f*), (F",g9) ~ (F"*,9%).
Then, using (B, flpr) ~ (B, f) ~ (', f*) ~ (E"™, f|pem), we get (B, J) B < 1" n B,

f=1/flg=r*gand (F,g), F c F'nF™* g = g|ly = g*|p. Thus, using lemma we finally
get (E, f) under (E, f).
Consider (E,go f).

Then E ¢ E” n E"*and

~ ~

goflg=90flg=3oflg=goflg=9cflg=30flg=9"c 'z

Q|

Thus,
[E",go fler] = [E™, g% o f*|pn]
HIPARE;

Now that we have our maps that commute, we can finally define the category of spectra.

Definition 2.1.14 (Spectra category).
We define the category of spectra Sp.

Ob(Sp) = {E| E is a spectrum as defined in[2.1.1}

Sp(E,F) = Hom(E,F)
with idE = [E,ZdE]
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Remark 2.1.15.
Let E € Ob(Sp) and let E' c E be a cofinal subspectrum. Consider [E’,idg/] € Sp(E, E’) and
[E',.] € Sp(E', E). Then

[E,idg] o [E,1] = [E,idg] = [E, idg]

[E' 1] o [E idp] = [E,idg]
Thus, E and E’ are isomorphic in Sp.

Notation 2.1.16. We usually write a map f : E — F without specifying it’s cofinal domain
because as showed in the previous remark, it is isomorphic to E in Sp.

Now, that we have our category Sp , we can consider the following functors on it.

Definition 2.1.17 (Functors on Sp).

o We define the functor %%
Yx*:CW — Sp

2P(X) = Z°X

0 _ g _ id{*} n<0
B = Unlnez “”thf”_{ SfSnX - SY n>0

o We define the functor X that shift our spectrum:

>:Sp — Sp
(ZE)n = Lin+1
(Zf)n = fn+1

o We see that this also induce an inverse functor X!
Y !:Sp—Sp
(EilE)n = Lin—1
(E_lf)n = fnfl
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2.1.2 Homotopy on spectra

Having our category Sp, we want, similarly to CW, to define an homotopy on it. For that, we
need some preliminary definitions and results.

Example 2.1.18.
We give here a example of cofinal spectrum that is central in spectral homotopy theory.

All cofinal subspectra of XS are of the form X" "X*S".

Definition 2.1.19 (Smash product of a spectrum with a CW complex).
Let X € Ob(CW), E € Ob(Sp). We define the smash product E A X € Ob(Sp):

(EAX)p=FE, A X

SEAX) 2SS A B AX)2(S'AE)AX =2XE 1 A X
Y(EAX)y=(poAidx)(ZEp A X) S Epyr A X
Let f : E — F be a map represented by (E', f) and g : X — Y a cellular map. Then, we define

fArg:EAX—FAY represented by (E' A X, f A g)

Remark 2.1.20.
VX € Ob(CW)
YPX >2SAX
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We now can define spectral homotopy.

Definition 2.1.21 (Homotopy on spectra).

Let E,F € Ob(Sp), f,g € Sp(E,F). We say that f is homotopic to g (f ~pgom 9) if
3 amap H:E ATt — F such that the following diagram commute

E
Lo
H
EATI" F
L
g
E

Meaning there exists a cofinal subspectra where the functions they’re build out agree.
Homotopy equivalence is an equivalence relation. We also define the following sets

[E7F] = Hom(E7F)/'\‘Hom

m(E) = [E"S,E] neZ

Verification of Definition [2.1.21
Homotopy is indeed an equivalence relation:

o reflexivity: Let f: E — F be defined as [E’, f']. We define
H:EAItT > F
H=[E AT, f ~idx]
Hoigy = [E,(f nidx)oioa] = [E,f'] = [E',. '] = f

e symmetry: Let H = [E, H| be an homotopy between f = [E’, f'] and g = [E”,¢"]. Then
consider

H=Ho(idg A (1—t) =[E,Hoidg A (1—1t)]

~ S . I — [E".d"] n=0
Hoi, = [E*,Ho(sz/\(l—t))ozn] = [E* Hoiy_p| = [E ,Hoi1_y] = { B, f] n=1

e associativity: Let Hy = [E1, H1] be the homotopy between f and g, Hy = [Eo, Hs] the
homotopy between g and h. Then consider the following map

= Hj o (idx A 2t) 0<
H_[E”“EQ’{ Hyo (idx A 1—2t)
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This gives us the homotopy between f and h.
Oz12m
Similarly to CW, we can define pullbacks and pushforwards.

Definition 2.1.22 (Pullbacks & pushforwards on spectra).
Let E,F,G € Sp, f € Sp(E, F), we define the pushforward of f

fa: [G,E]—> [GaF]

f*([h]) = [foh]

and the pullback of f
f*:[F,G] - [E,G]

F*([n]) = [ho f]
See that (f o g)s = fxogs and (fog)* =g* o f*

Now, we find the first important property of spectral homotopy. It is a central equivalence and
a reason why spectra were defined in the first place.

Proposition 2.1.23.
Let E € Ob(Sp). Using remark and that a function f : X" "E*ST — E is just a map
f:8" — E,._, with further parts defined by suspension X5f : S°7" — ¥*E, ,, c E,._,+s. Then

a: mp(E) = colimy mpik(Ey)

a([EERS ) ={f ={ % [, 5f, -}

using for our colimit

b Pn
Tntk(Er) — Tns14k(EEr) — Tnyks1(Ert1)

Furthermore, under this form, we get that pushforward of a spectral function r : E — F induce
the following commutative diagram:

T

mn(E) T (F)
(6 (6%
{rk*}
colimymn 11 (Ey) colimymy 1 (Fy)
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Proof of Proposition [2.1.23

This is well defined because f : S” — E,._, is unique.

e surjective: For any {[fn]} € colimg 7,4k (Ex), Then, 3[f] € mp4r(E,) minimal such that
[f] # [*]. Then, using f as a representative, we get a([S""E%®S", f]) = {fn}-

o injective: Let {[f]} = {[g]}. Then, we can find an homotopy H : S"™" A IT — E, s,
between X°f and X°g for some s. Then, [X"775S"S A [t H] is an homotopy of
[SPrS%S7. f] and [E7TE0ST, g].

For the last part, this comes from the fact that cor,(u) = {[rg o u]} = {res 1]} = {resfa(p).
L2123

Because 7, (Ey) are abelian groups, we can give i (E) the structure of their colimit, making
it an abelian group.
Now, we define, similarly to CW, the homotopy equivalence on sets.

Definition 2.1.24 (Homotopy equivalences on spectra).

o Let E,F € Ob(Sp), f € Sp(E,F). We say that f is a homotopy equivalence between
E and F if 3g € Sp(F, E) such that f o g ~Hom idp,g° f ~Hom idE.

We say that E and F are homotopically equivalent (E ~pon F) if there exists an
homotopy equivalence f € [E, F].

e Let E,F € Ob(Sp), f € Sp(E,F). We say that f is an weak homotopy equivalence
between E and F' if
VneZ, fr: mp(E) = mp(F).

Verification of Definition [2.1.24
Being homotopically equivalent is indeed an equivalence relation:

o reflevivity: E ~pom F using idg.
o symmetry: E ~pom F using f and g. Then F ~p,, F using g and f.

e transivity: E ~pgom F using f and g and F' ~pg,, H using f' and ¢’. Then consider
flofeSp(E,H),gog € Sp(H,E). Then:

flofogogl ~Hom f/oidFOg/ ~Hom flog/ ~Hom ZdH
goglof/ofNHomgoidFof "'Homgof ~Hom ZdE
Furthermore, being an homotopy equivalence is stronger than being a weakly homotopy equiv-

alence. Indeed, using f: E — F,g: F' — FE given by E ~p,m F, we get that:
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V[h] € mp(E), g« © f[h] = (g0 f)«[h] =[hogo f] = [hoidg] = [h] = g« © fx = idy, ()

and similarly for f, o g.. Hence, f and g are weak homotopy equivalence.
]

Now, we define cones and wedge product on spectra.

Definition 2.1.25 (Mapping Cone on Spectra).
o Let E be a spectrum, we define the cone of E: CE = E A ([0,1],0).

o Let f: E — F be a spectra map. We define the mapping cone of f noted F' vy CE:

(FusCE)y = F, vy CE!, with (E', f') representing f

We can see that for X € Ob(CW) ¥*CX =~ CX*X.

Remark 2.1.26.

Mapping cones on spectra are independent from the the choice of representation. Indeed, see
that for (E”, f'), (E”, f”) both representing fwith (E, f) under both, we get that F'up CE’ and
F U v CE" have for mutual cofinal subspectrum F U CFE and they are thus isomorphic in Sp.

Definition 2.1.27 ( Wedge product on spectra).
We define the wedge product on spectra. Let E¢ be spectra

(\/ Ea)n = \/ Eﬁ

acA acA
2’( \/ Eg) - \/ TES
acA acA
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Proposition 2.1.28.
Letig : EB . V ea £ be the standard inclusion maps. Then, this induce the following bijections

{=cia}aca : Hom(\/ E*,F) = [ | Hom(E*, F)

acA acA
f— H(foia)
acA
{it}aca: [\/ B F) = [ [[E*, F]
acA acA

(11— ] If oial

acA

Proof of Remark|2.1.28
First, let £ < V oea E¢ be a cofinal subspectrum. We have that E n E“ is cofinal in E.

Indeed, because cells e € ES are also cells of (\/ .4 E*)n and because X'e € (\/ c4 E*)n+1 is
by definition in E¢, ;, we get that 3m such that ¥"e € En ES ..

Inversely, with the same reasoning, let E be a cofinal subspectrum of E%. Then, we have that
Vaea E” is a cofinal subspectrum of \/,,_ 4, E®.

Now, let’s show that

{=ciataca: Hom(\/ E*,F) = | [ Hom(E", F).
acA acA

o surjective: Let [[,calE", fal € [1yea Hom(E®, F). Then, consider [\/ ca E; (fa)acal.

(= adoea (1N B (fodoeal) = [JIE".1a

acA acA

o injective: Consider [E1, f],[E2,g] be such that

{_ oia}aeA([Flu f]) = H[El N Ea’ f o ia] = H[EZ M Ea)g Oioa] = {_ Oia}aeA([Ev g])
acA acA

Then consider [ES, hy| under [E; n E%, f oiy] and [E2 n EY, goiy]. We have

[\/ E$. (ha)aca] is under [Ey, f] and [E,g],ie. [E1, f] = [Ea,g]

acA

For the homotopy part, we have to use that <\/a€A Ea> AT =\/,cq E“ A IT and that E is
cofinal in E A It «— E = E' A I with E’ cofinal in E.
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Then, an homotopy between [E1, f] and [Es, g|, with Eq, Ey cofinal subspectra of \/ .4 E¢,
given by [E3 A I, h] is given one to one with [[,c4[(E3 n E%) A I*, hoig].
]

Now, we want to prove the spectral version of the Whitehead theorem [2.1.32] To do so, we will
need the following technical lemmas.

Lemma 2.1.29.
Consider the following commutative diagram of spectra and functions:

Fr—f . g
g A
A—" B

with f being a weak homotopy equivalence. Then, we can find a cofinal subspectra B’ < B with
functions h' : B' — F and k : B' A I — D such that:

1. Ac B.

2. W|a=g.

3. kow=fohl, kou = h|g.
4. k(a,t) =k(a,s) Vae A t,sel.

Proof of Lemma |2.1.29;
Let
T = {(A' B K| A" is a subspectrum and it follows property 1 to 4 }

and we work on T as a poset using
(A/7h/,k/) < (A//,h//,k”) — Al c A”,h”’A/ — h,, k”|A//\I+ — k,

Consider C' a chain in the poset T. Let’s show it has a supremum.
We define M = (UDeC D,Upec b, Upec k:D). It is easy to see that M still preserve all 4

properties and by construction, VD € C, D < M
Thus, (T, <) is an inductive poset. Using Zorn’s Lemma, we get 3 (B’, i/, k) maximal in T.

Now, let’s show B’ cofinal. Consider a cell e € B, and S(e). By its definition, we have that
S(e) = X"¥*S". Then, S(e) can be seen as a cofinal subset of XS (with m =n +r).

Then, consider [S(e), h] € m,(F). using the fact that f is a function and a weak equivalence,
we get that 3[U, u] € 7 (F) such that [U, f o pu] ~gom [S(e),h]. Using we thus have
U n S(e) =W cofinal in S(e).
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Thus, Jw such that X*e € W, ,,. Note that all this construction fall back on g if we end up in
A, and that thanks to fog = hla.

If Vi € N,Y(e) ¢ B, then du to the nature of W, we get that W n B’ = {x}. Thus,
(B'uW,h upu,W,kur)eT = (B',h, k), which contradict the maximality of B’.

Thus, B’ cofinal.
L2129

Corollary 2.1.30.
Consider the following commutative diagram of spectra and maps with f a weak equivalence:

FfE

»

AN

AN

g k\\h
AN
AN

A—-—>B

Then, 3k € Hom(B, F), k|a = g such that fok ~gom h

Proof of Corollary [2.1.30}
Let f =[F', f'],h =[B',h],g = [4,¢'] with ¢’(A") € F’ and A’ ¢ B’ (by using lemma [2.1.12)).
Because [’ = f o with % its own inverse in Sp, we get that f, = f ot and thus f'is a
weak equivalence function between F’ and E. Then, we get the following commutative diagram
of spectra and functions:

!
A
q n'
A B’

k = [B,h] and the homotopy between f o

Using previous lemma [2.1.29, we get (B, h, k) with
k = [B,foh|and h = [B,}|g] is given by H =

B cofinal in B’ and thus in B. We define
h = [B, f

[B ATT K]
L2130

Corollary 2.1.31.
Let E,F € Sp and f € Hom(E, F) such that f is a weak homotopy equivalence. Then YG € Sp

f« |G, E] =[G, F].
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Proof of Corollary[2.1.31

o surjectivity: Consider the map h : G — F and the spectra * = X®x. composed only of
based point. Then, we construct the following commutative maps diagram:

E ! F

L h

*

G
Then, using corollary [2.1.29 we get k : G — E such that f ok ~pgom h.

e injectivity: Consider the maps g1, g2 : G — E define as g; = [Gj, g such that fog1 ~Hom
fogs using themap h: G A IT™ — F. We define A =G A {0,1}* and themap g: A > F
defined as [G1 A {0} L G2 A {1}, 9] L g5].

Then, we construct the following commutative maps diagram:

E ! F

9 h

A—5 G ATt

By using corollary [2.1.29, we get k : G A [T — FE such that k|4 = g. Thus, k is an
homotopy between ¢g; and gs.

(213

Theorem 2.1.32 (Whitehead’s spectral theorem).
Let E,F € Ob(Sp), f € Hom(E,F). Then:

f is an homotopy equivalence <= f is a weak homotopy equivalence.

Proof of Theorem [2.1.32
e =: Already done on definition [2.1.24

e <: Consider those 2 bijections
f+[E,E] — [E, F|
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f«|F,E] — [F, F]
and let g € Sp(F, G) such that [f o g] = f«[g] = [idr] ( that exists by surjectivity).

Furthermore, consider go f : E — E. We have fy[go f] =[(fog)o f] =[idyo f]l=[f] =
f«[idg] and by injectivity, this gives us that [g o f] = [idg].

Thus, f is indeed an homotopy equivalence with inverse g.
(2132

We are now free to define the category of homotopy on spectra.

Definition 2.1.33 (Homotopy spectra category).

We define the homotopy spectra category: HoSp
Ob(HoSp) = Ob(Sp)
HoSp(E, F) = [EvF]

f is an isomorphism in HoSp <= f is a weak homotopy equivalence.

Here are a few interesting properties of homotopy on spectra.

Proposition 2.1.34.
Let X, Y € Ob(HoCW), E, F € Ob(HoSp). Then:

1. if X is weakly homotopically equivalent to Y, then E A X ~gom E AY and XX ~gom
YPY.

2. if E ~gom F, then E A X ~pgom F A X

Proof of Proposition [2.1.34

1. Let f: X — Y be a weak homotopy equivalence. Then, by using whitehead’s theorem
1.4.12] it is an homotopy equivalence. Consider ¢ : Y — X, h; the homotopy between
fog and idy and hy the homotopy between g o fand idx.

for E A X, see that (E A X) ATt = E A (X AIT). Therefore, we get that idg A hy is an
homology between (idg A f)o (idg A g) = (idg A fog) and idg,+. It is similar for hs.
¥*X comes because X =S A X.

2. Let f: E— F, g: F — E be the homotopy equivalence with h; the homotopy between
fogand idp and ho the homotopy between g o fand idg. Then, the maps f A idxy and
g A idy are homotopy equivalence with homotopy maps h; A tdx and hg A idx.
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Now, we want to show the homotopy extension on spectra, similarly to [1.4.16] We need the
following lemma.

Lemma 2.1.35.

Let E,H € Sp, F be a subspectrum E and G be a cofinal subspectrum of E A {0} U F A It.
Given a function g : G — H, we can find K a cofinal subspectrum of E A I containing G and
an extension of g named k : K — H

Proof of Lemma

We will construct the K™ layers and k|x» — H by induction.

We have that K9 = {x}, k| g0 = *.

Then, suppose we have defined K™ layers and k|gn — H such that K™ cofinal in E™ A I,
gn c K™ and k’c;n = g|Gn.

For every cell e = {ey, Y em, -} of E"TI\(E™ U F"!), we can find a N large enough using
cofinality such that X'Ve,, A I is attach to K", v and g is defined on ¥"Ve,, A {0}*. Then,
we have a map

(gm+nN U kman) : YNem A {0}t U YNOey A TT — Hpypin

Then, by using the homotopy extension property on CW complexes we get that we can
extend it into a map
Ve : E'Nem AT - Hp N

Thus, we add all ¥'Ve,, A It and its suspensions to K™ U G"*1, getting K" and k|’ using
ve. We have that by construction that K"*! is cofinal in E, 1 A I*, that G, < K"*! and
klgn+1 = glgn+1.
Thus, by taking K = |, K" and k = |J,, k|kn~, we get our desired result.

L2135

Corollary 2.1.36 (Homotopy extention on spectra).
Let E,H € Ob(Sp), he Sp(E,H). Let F be a subspectrum of E and g : F — H a map. Then,
if we have that h|p ~gom g, then 3g: E — H such that

h ~Hom ¥, §|F =g

Proof of Corollary[2.1.36
Let h = [E’,h'] and [U, f'] = f with f the homotopy between h|rp ~pom g. Then, we define

G = E' A{0} U a cofinal subspectrum of E A {0} U F A I'". Then, using previous lemma2.1.35

on the function

Wof:G—H

42



we get that a map k: E A IT — H k = [K, k'] such that k" is an extension of b’/ u f’. We thus
have our desired homotopy k between h and k oi; = g such that koii|s = g.
]

2.1.3 Group structure on spectral homotopy sets

In this part, our goal is now to give further structure on [E, F]. To do so, here is a small
property that can help us simplify some construction.

Proposition 2.1.37.
Let E € ObSp) Then IE € OL(Sp) such that E ~pgom E' and the maps
Pn : XE;, — E .| are simple inclusions (i.e. ¥E], c E!, )

Proof of Proposition
Considering E as {E,, p,}. We use lemma and get a spectra E'. We also get cellular maps
rn : Bl — E, that are homotopy equivalence (with inverse i,) using h,,. Then, we define the
spectral function :

r B - E

r={rn}
because rnﬂlgmL = pp 0 X1y, this is indeed a function.

Now, knowing that ry, : mq(E}) = my(Ek) and that m,(F) = colim ym,44(F)) we get that

Vn € Z, this diagram
T

™ (E') T (E)
o o
, {(rk)«}
COhmkﬂ'n_i_k(E];) Colimkﬂ-n+k(Ek)

commute, thus, r is a weak homotopy equivalence. Using theorem [2.1.32] we get that r is an
homotopy equivalence between E and E’
O EZT37

We will now show a very important theorem in spectra. If it looks similar to [1.1.11} it is far
more complex to prove.

Theorem 2.1.38.
Let E € Ob(HoSp)
YE ~gom E A St
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Proof of Theorem [2.1.38}
Using proposition 2.1.37L we get that E ~pom B, with

E, =E,A{n}t U | | SV E A [k K+ 1 .,ne

k<n

[2,k + 1] ~ [ F1pp(x), k + 1].
We will construct an homotopy equivalence f : E/ A S — LE.
We define the following functions:

e v/ : S =~ S! given in example and using that S' = X({1}*)

e o : I? ~ D? the homeomorphism obtained by centering and then extending radially, thus
insuring that o(01%) =~ S1.

e K : D? x I — D? the homotopy given by
K(x,y,t) = (x cos(mt/2) — ysin(wt/2), x sin(wt/2) + ycos(ﬂt/2))

K(z,y,0) = (z,y), K(z,y,1) = (—y, ). We furthermore have that K(S!) — S*

e a~'oKoa is an homotopy between I? and itself. K (z,y,0) = (z,y), K(z,y,0) = (1-y, z).
Using the fact that S' A St = 12/(0I x I U I x 0I), we define

H:(S"ASYAT - S' A S!
H = g o K with ¢ the quotient map
Then, we have H o iy = idg1 ,s1 and H oiy(x,y) = [V (y), z].
We consider E}, A S* as (Ep A {n}" A SY) U [ (S"™ 1A SY A B A [k k+1]7 A SY)0

Now, consider
fniE;L/\Slﬁ n+1
Fall&:,9]) = pu([V" (1), €]) € Epr with [V"(y), €] € ST A B, = ZE,
fa([s,z,&,m+t,y]) = (pnoXpp—10---0 E”fmpm)[s, H(m, V’m(y),t),ﬁ] eE,1
with [s,H(m, V’M(y),t),g] ey-mHlp
with s € "™ 1z ye St ée B, te(0,1]
After looking at it for a while, we see that they are continuous and that

Pn+10 Efn([S,Jf,f,m + ta y]) = (pn+1 © an © E2pn—1 ©--+0 anerlpm) [§,H(x7 V/m(y)7t)7£:| -

= fasilseyasi[s, @, §,m+ 1, y]
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Pn+10 Efn([€7 n, y]) = (pn+1 o Epn)[$a V/n(y)a 5]
(pn+1 © an)[H(ac, V/n(y)’ 0)7 5]
= Jfo+1 |EE;LA51 [I, §;n, y]
Thus, {f,} define a function f : E’ A S — X E. Let’s now show that this is a weak homotopy
equivalence.
We consider the following maps

gn :XE, = E, AS' - E/ A S!
gn([z,€]) = [&n, v (2)]
with ¢ € E,,, x € S1. Then, we have that f, o (g, op,!) = idsyg,. Indeed
F 0 (gn 00 ) (Pa(2,€)) = fr 0 gn([2,€]) = ful[€,n, 0" (@)]) = P (V" (), €) = pu(2, €)

Furthermore, we have that (g, © pp') © fn ~mHom idg, Aq- We have that
(gnopyt) o fn\En,\{n} = idp, A{n}- Thus, using an homotopy we defined on we get

(gnopyt)ofno(H Aidgi) : EL ATY A ST — E! A St
(gnopp') o fuo (H Aidgi) oig = (gnopp') o faoidp x5t = (gnopy') o fn

(gnopgl)oan(H/\idsl)Oil = (gnopgl)Oan(inorn) Aidgr = (inoTn) Aidgt ~Hom idE;LASl

Using this, we get that
fe : (B A SY = m (X E)

Then, we consider the spectra Y/ E:
(X'E)n =Y(En) € Enya
Pl B(XE), — (X'E)pt1is given by: ppi1 0 Xlyvg,
Pl (BYE,) =Y (YE,) € X (Eni1)

Y/F is a cofinal subspectra of X E. indeed e € (XE),, = E,+1, then ¥ (e) € (X'E)p41.
Using this result, we consider the following commutative diagram:

(B A SY) IE (S E)

« «

{(fr)+}

colimkwn+k((E’ A Sl)k) colimgm, 1+ (X E)g)

This induce that f is a weak homotopy equivalence. Thus, by theorem [2.1.32] f gives us that
E! A S' ~gom ¥'E but because ¥'F cofinal in X E we finally get that:

EAS' ~gom E'ASY ~pgom Y'E =~ X F
(2138
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The previous theorem allows us to give spectral homotopy set a group structure.

Corollary 2.1.39.
Let E,F € HoSp. We can give each set [E,F| the structure of an abelian group so that
composition is bilinear.

Proof of Corollary[2.1.39
Since ¥ is an invertible, [E, F| = [EE,XF]. Thus, using [XE,XF] ~ [E A SYF A SY.
We define the function o:

o:[E,Fl=[E S, FASY

o([f]) = [f ~idg]
Consider 02 : [E, F] = [E A S?, F A S§?]. We construct a co-multiplication on S? with base point
g using our example

082 =wst Hoysly nst~ 52y 52

We also define the inverse map v:
REND YL LA ST LN
Thus, we define 1z for spectra
T:EAS2 BN A (8% 8%) = (B AS%) v (B A S?)

P:E/\SQM>E/\S2

This gives E A S? the structure of H-commutative cogroup on E A S2. Indeed:
(idgs2, {*}) ol = (idg Aidge, {*}) o (idp A p) = idp A (idgz, {*}) ot ~pHom idE Aidg2 = idp , g2
({+},idg.s2) ot = idg A ({},idg2) o b ~Hom idp A idg> = idp, g2
(’idEA52 v ﬁ) ol =1idg A (idsz v ,u) Ol ~Fom tdE A (u v idgz) op= (H,idEAsz) ol
(7. {x}) o =idp A (v,{}) o ~Hom idE A {x} = {*}
({=},7) om =idg A ({#},V) o b ~Hom idp A {x} = {*}

poT =idg A (poT) ~gom idp App=T1
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Now, we can finally define our composition law on [E, F]:

«:[E,F]| x [E,F] — [E, F]

% [EAS?]FAS*x[EAS*FASY —[EAS%FAS?
1([f],[g]) is define as the homotopy class of the following map:

EAS2LE (EASY) v (EASY) LS (FAS)v(FAS? -2 FaS?

with A(z, %) =z = (*,x)
First, we see that Ao — v — = (—, —) as define in and that it suffice to work on pu to show
our result.

o well defined: Let f,g: EAS? — F AS? f ~gom [/ using hy, g ~mom ¢ using hy. Then,
let’s show p(f,g) ~mom p(f’,g'). Because hy: E A S A IT — F A S%, consider

plhy, hg) = Ao (hy v hg)o

Because 1 = idg .+ A p we have that @1 oig = ig o m. This imply

H(hf’ hg) © io = H(hf © /iO) hg © ZO) = H(fa g)
Thus p(hy, hg) is our homotopy between p(f, g) and H(f’,g’)

e associative: Let f,g,h € Sp(E A S%,F A S?). We have to show that

H(fvﬂ(g¢h)) ~Hom /L( (fa ) )
p(f mlg,h)) =

ofv (Bolgvh)on)on
o ((foid) v (g.h)om) o
(fv(gvh)o(idva)on
((fvg)vh)) (7 vid)op
o(((f,9)om vhozd)
o(Aofvgom)vhopn
w(pe(f,9),h)
e neutral element: Consider {} : E A S2 — F A S? the map that send everything into the
base point. Then, Vf € Sp(E, F)
p{=},f) = Ac{spvfop
({x}, flem
© ({*}7idE/\S2) o[
~Hom [foidg,s2 = f

o O

|
[P > > =
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e inverse: Vf € Sp(E, F), consider f ov € Sp(E, F). Then
u(f o7, f) Ao(fowv f)om

(fov,floqm

f © (ﬁv idE/\SQ) op

~Hom [fo© {*} = {*}

e abelian: Vf,g € Sp(E, F)

p(fig) =ADo(fvg)on ~Hom Ao (fvg)opoT =Ao(gv f)om=pulg,f)
e composition is a bilinear map: Indeed consider the composition map:
o:[E,F] x[F,G] — [E,G]

[flelgl =lgo /]
Then, we have that:

— [{x}olgl = [go{=}] = [{x}] = [{x} o f] = [f] o [{+}]
= [p(f.9)lo[h] = [hop(f,9)] =[ho(f,g)on] =[(ho f,hog)on] =[u(hof hog)]
— Consider h: EAS? — F A S% Then , using (idp,g2,*)ofioh ~gom idp,g20h = h,
we get that
ﬂohNHom (h\/h)oﬁ

Thus:

[h] o [p(f,9)] = [p(f,g)ohl = [(f,g)omoh] =[(f,g)o(hv h)opu] =

(12139

Note that the last part gives us that pullback and pushforward are group morphism.
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2.1.4 Induced homology and cohomology

Now, we want to show that homotopy sets have an exact sequence property on cofibres [2.1.44]
To do such a thing, we will need to define cofibres on spectra and to prove a fews intermediary
lemmas.

Definition 2.1.40 (Spectral cofibres sequence).
Let f € Sp(E, F). We call the following sequence

E-Lr i Fy,cE

the special cofibre sequence.
We define a general cofibre sequence a sequence

G-LHHLK
such that IE, F € Sp and f € Sp(E, F) and the following diagram commute up to homotopy.

G g

K

E f F J Fu;CE

with a, 8,0 homotopy equivalence.

Proposition 2.1.41.
Given the following sequence:

ELFPLPo;cEE East L2 pagt ...

with ky|p, = *, kplo@)\(E.1] = id
Each pair of consecutive maps forms a cofibre sequence.

Proof of Proposition [2.1.41;  [Swil7] 8.29 and 2.39. This is a straightforward result we won’t
have time to prove. Note that it also exists of CW-complexes. WSl
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Now, we give a remark that will help us simplify some of our later proofs.

Remark 2.1.42.
We can assume that f (or ¢g in the general case) is an inclusion. Indeed, Let f = [E’, '], let
My=Fup E' ATT ﬂ Then, using the rectraction map of E’ into F' given by

Un: (Mg)n — Fp

Unly, =id,v]e,t] = f(t)

we get that this is an homotopy equivalence and furthermore, we have that X'v,, = v,,11 |E/( M;)
Thus, we have the following commutative homotopy diagram:

n

E f F J FUfCE
L 14 g

E! L Mf J MfULCE/

with o defined using the fact that E' A [T U, CE' ~gom C(E')

Now, consider the following technical lemma

Lemma 2.1.43.
Given the following homotopy commutative diagram:

9 h

G H II( G A St
[
« B8 K a A id
|
/ h/ \ k/
o —2 H K’ G A St

such that the rows are cofibre sequences. The, we can complete the diagram with k.

Proof of Lemma [2.1.43

wlog, we can assume that the rows are special cofibre sequences. Furthermore, we may assume
that ¢ is a standard inclusion. We carefully chose the representatives of 8 = [B’, '], ¢ = [A’, f']
and [A, o] = a such that g(A) € B and o/(A) < A’. Then, we have the following homotopy
commuting diagram.

“We have (My), = Fy, up Ej, A IT with [z,1] ~ f}(z) for € E},.
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A B J>BUy,CA—— A A St
|

|
/ .
o I6; e o Aid

. Y
A g H ]H,Uf/CA/HA//\Sl
Then, using the homotopy extension lemma [2.1.36] we can construct
ﬁ” . B N Hl
,B"og = floalaﬁl ~Hom ﬂ

We thus define
kg =" klca =C()

The following diagram commute strictly

A g B J BUygCA—— g 5 St

1/ .
o B K o Aid

/

AT L Up CA s g\

making the previous one commute up to homotopy.
L2143

The previous lemma help us put in light this beautiful property of spectral homotopy theory.

Lemma 2.1.44.
LetGH HL K bea cofibre sequences. Then, YE € Sp, the following sequences:

[E,G] 2 [E,H] 2% [E, K]

(G, E] <~ [H,E] &~ [K, E]

are exacts.

Proof of Lemma [2.1.44

First, see that ho g ~pom 0. Indeed ho g ~pgom jo f: E— Fuy CE. With jo f(e) = [f(e)] =
[e,1]. Then, we define
h:EAI" - FusCE

hZ[idE/\t]
with hoi; = jo f, hoig= {*} = 0.
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e Because h o g ~pgom 0, we have that (ho g)x = hy 0 g« = 0x. Thus, Im(g«) S ker(hy).
Now, let f : E — H such that h.[f] = 0. We consider the following homotopy commuting
diagram

L

E EAI"'L)E/\SILCZ)E/\SI
|
|
f h K fAid
|
V .
H—h g Grst 90y o

with A the homotopy between 0 and g o f. Using lemma [2.1.43] we get s such that
f Aid ~gom (g Anid)ok. Using o : [E,F] = [E A SYLF A S, weget ¥ : E — G,
k = k' A id. Thus,

(gor)nid= (g nid)o (k' Aid)=(gAid)ok ~Hgom f Aid
Using the fact that o is injective, we get that [g o k] = [f], proving our point.

e because h o g ~gom 0, we have that (ho g)* = g* o h* = 0x. Thus, Im(h*) < ker(g*).
Now, let f: H — E such that ¢*[f] = 0. We consider the following homotopy commuting
diagram

k/

G H K G A St
\
\
f IR
\
. Y
* F id E *

We thus have using lemma [2.1.43| & with h*([k]) = kK o h ~gom f, proving our point.
O 2144

Knowing this lemma, we now can define induced (co)homology using spectra.

Definition 2.1.45 (Induced reduced homology and cohomology by spectra).
Let E € Ob(HoSp). We define the reduced homology induced by E:

E,:HoCW — Ab
E,(X)=m(EAX)=[X"S,E A X]
En(f) = (idE A f)*

with oy, : defined as

On: Bn(X) = [E"S,E A X] = [E"MIS,2FE A X] = [E"TIS,E A ST A X] = [E"T1S, E A £X]

52



We also define the reduced cohomology induced by E:
E* : HoCW — Ab
E"(X) =[2*X,X"E]
E"(f) = (7"
with o™ : defined as

o E"TH(EX) = [EP2X,X"TE] = [EEYX, XL E] =~ [¥° X, X" E]

using cofinality of XPXX in X3P X

Verification of Definition [2.1.45
Let’s show that {Ex,o0.} and {E* 0%} are respectively a reduced homology and a reduced

cohomology.
First, consider X u; CA a mapping cone of f : A — X. Then

ZOO(X Uf CA) = EOO(X) Uyof EOOCA = ZOOX Uyo f CEOOA

Similarly,
EAN(XupCA)=EANXUfEACA=(EAX)urC(EAA)

Those results are useful because they allow us to transform mapping cone on CW complexes

into mapping cone on spectra.

e Vfe HoOCW (A, X). Then
E AN g x MEN g, (X Uidgas CA) = EA (X Uy CA)

is a cofibre sequence. Thus, using we get the exact sequence

(B A A) e o a x) BB (A (X Uy CA))
e Vfe HoOCW(A, X). Then
22 A 2, s x 2, 50 (X Uy CA) = 5°X Usep CS%A

is a cofibre sequence. Thus, using [2.1.44] we get the exact sequence

=24, 5 E] D (s x srp) BT (s (x O 04), 5 E]

[ ET7H
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Remark 2.1.46.

e See that thanks to it construction, the cohomology E* follows the wedge axiom. Indeed,
let iq : Xo — \/,cq Xo. Then, using proposition [2.1.28] we get that

{%%a}acal \/ 22 Xa, F] = | [[E% X, F]

acA acA

Now, using the fact that X°(X vY) = (¥*X) v (¥*Y), we get that

{(2%0)*}pen B\ Xa) = [E*\/ X0, T"E] = [ [[E¥Xa, Z"E] = | | B*(Xa)

acA acA acA a€EA

e Furthermore, it is also apparent that E* and E, follows the weak homotopy aziom.
Also, using this definition, we can extend the notion of cohomology to spectra.

Definition 2.1.47 (Cohomology of a spectrum).
Let E, F be a spectrum. we define the E-cohomology of F as:

E"(F) = [F,X"E]
Note that for G L HS K spectral cofibre sequence, usz'ng we get the exact sequence
EMG) L& ErH) £ BrM(K)
Furthermore, if Y¥n € N, F_,, = =, Then, we can see the E-cohomology of F as:

E"(F) = limy E""F(Fy)

Verification of Definition [2.1.47
Those two definitions are indeed the same. Indeed:

[F, X" F] [ colimy, R7FR* [, N E]
= limg [Z7FE%F, S"E)]
= limg [B®F, X" E)]

= limg EF7(F)

2147
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2.2 Brown’s Representation Theorem

Now that we know that spectra induce cohomology, we want to show the inverse, i.e. any
cohomology with WHE and wedge axiom can be seen as given by a spectrum. We will dedicate
the following section to that result, using Brown’s representation theorem.

2.2.1 Main result

In all this section we work on contravariant functors
F:HoCW — Gp

that they follows the following axioms

e Wedge W) :
(Fia)oea : F(\/ Xa) = [ | F(Xa)

acA acA
e Mayer-Vietoris MV) :

For any CW-triad (X, A, A2) (i.e. Aj, Ay are subcomplex of X = A; u Ag) with
ANS F(Al),xg € F(AQ) such that

F(iayna,) (1) = 21|a;na, = 2|14, = Fiana,)(72)

Then, Jy € F(X) such that y|a, = x1,y|a, = =2

Proposition 2.2.1.
VY € Ob(CW),[—, Y] : HoOCW — Set is a contravariant functor that satisfy W) and MV).

Proof of Proposition [2.2.1

e W): Let show {i%},ca is surjective: For an element indexed by {[fa]}aca, we have
[ VaeaXo — Y defined with foi, = fo. Then

{i;}aeA(f) = {[f © iz]}aeA = {[fa]}aeA

For injectivity: let [f], [g] such that Va € A,[f oiq] = [g 0 in] using H* : X, A I, Then,
H:(\oenXa) ATt =Y given by H oi, = H® is the homotopy between [f] and [g].

o MV) Let X = Al U AQ with [fl] € [Al, Y], [fg] € [Ag, Y] such that
filainAy ~Hom f2]A,~A, using H. Then, du to the fact that the inclusion in CW-complex
has the homotopy extension property, we get that there exists H : AjAI* — Y, Hoig = fi,
Hoi = f{ with f{|AlﬁA2 = fa|4,~4,. Thus, we define

g: X ->Y
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[9la] = [f1], [9]a.] = [f2]-
O 22T
Note that because [X—,Y] = [—, QY], we get that VY € HoOCW
[—,Q2Y]: HoCW — Gp

is a contravariant functor that follows W) and MV).
Now, we want to show [2.2.10 Every coming definitions and lemmas are needed preliminary
results. First, let’s compute the image of a singleton by F'.

Proposition 2.2.2.
Let = be the base point, F' be a contravariant functor|as defined earlier] Then

F(x)=0

with O the zero group.

Proof of Proposition [2.2.2;
Using the fact that F({zo}) = F({zo} v {z0}) = F({zo}) x F({x0}), using map F(a — (a,a))
we get that |[F({zo})| = 1. Thus F({zo}) =0

Oz22

Now, we see that follows some very similar property to the one of cohomology.

Lemma 2.2.3.
Let X € Ob(HoCW) and {X,}nen be an increasing sequence of subcomplexes such that X =
Unen Xn and let F be a contravariant functor|as defined earlier. Then:

{F(in)}nen : F(X) = colim, F(X,,)

18 a surjection.

Proof of Lemma [2.2.3}
We set X_1 = {x0}. Consider the following sets

X' = U [n—1,n]" A X,

n=-—1
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Then, we have that
o AU Ay =X
Ao Ay = R A X =1, Xi =V, X [
® At = Uiz 1k oaalk = LEIT A Xk ~Hom Ups 1.1 0aa{F} A Xk = Ly 0aa X = Vi oda Xr-

i A2 ~Hom \/k even Xk‘lﬂ

Thus, given any {z,} € colimF(Xn)IZl, using the wedge axiom, we get that Jy; € F(A;) with
y1|x, = z for k odd. Similarly, 3y, € F'(A2) with ys|x, = z for k even.
Then, let’s consider y1|a,~4, = y1|vk Xt

e for k odd, yi1|x, = x.
e for k even, using i : Xy — X1 and thus ix, =ix,,, o1,
yilx, = Flix,) (1) = F(i) o Flixy,,) (1) = F(i)(rs1) = 2

It is the same proof for y2|4,~4, and thus

Yilarnas = Y2la1n4,
Using MV), 3y € F(X') with /|4, = v1,¥|4, = y2. Thus, y/'|x, = zx. Now, using the fact that
X' = U [n—1,n]" A X ~Hom U {n}t A X ~Hom U Xn=X
n=—1 n=—1 n=—1

we get that Jy € FI(X) with y|x, = x and thus {F(i,)} is surjective.
0223

Lemma 2.2.4.
For any map f; X — Y in HoCW and F a contravariant functor |as defined earlier. The
following sequence

F(x) LY pyy 22 gy oy ox)

1S exact.

SHere, we are using the isomorphism ¢ : | |, X — \/, Xi with ¢(z); = = if z € X;, 2o otherwise.
6Same way as for Ay
"In {zn}, Tn = F(i)(xns1) with i : X < Xk11 the standard injection
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Proof of Lemma [2.2.4
e ker FI(j) € Im F(f): Because F(f)o F(j) =F(jo f)=F({+}) = qﬂ

e ker F(j) 2 Im F(f): Let y € F(Y) such that F(f)(y) = 0.
Consider A; = [0, %] ANX, Ay = [%,1]+ AXUpY. Then AyuAdy =Y upCX, Ay n Ay =
{3}7 A X. Furthermore, we have that Ay ~om Yand thus F(As) = F(Y). Furthermore,
i: A1 n Ay — Y is given by id A f. Thus, let y; = 0€ F(A41),y2 =y € F(A2) = F(Y).
Then 0 = y1 = F(f)(y) = F(i)(y2). Using MV), we get that 32 € F(Y uy CX) such that
F(j)(2) = z[y = F(f)(v).

1224

Now that we have some structure on F', we define the central notion of the Brown representation
theorem.

Definition 2.2.5 (Universal element).
Let F' be a contravariant functor|as defined earlier.
An element w € F(Y') is called n-universal if

T, : [S9,Y] — F(89)

is an isomorphism for ¢ < n and an epimorphism (surjective morphism) for ¢ = n. w is called
universal if it is n-universal for all n.
Ty, is the natural transformation T,[f] = F(f)(u) € F(S?).

Any element of F(Y') is at least a —1 universal element.

Remark 2.2.6.

If f:Y > Y isamap in CW and u € F(Y),u € F(Y’) are universal elements such that
F(f)(v') = u, then f induces an isomorphism for all n € N f, : m,(Y) = m,(Y’). Indeed, the
following diagram:

Ta(¥) — L2 7 (V)
F(S™)

commute for all n. Because T, and T, are isomorphism, then so does f,

8Using the fact that j o f ~mom {*}
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Now, let’s show the core of Brown’s theorem.

Lemma 2.2.7.

Let F be a contravariant functor|as defined earlier|.

For any Y € Ob(CW) and n-universal element u, € F(Y), we can find a CW-complez Y’ with
Y c Y’ and a n + 1-universal element up+1 € F(Y') with uni1ly = up.

Proof of Lemma [2.2.

Let Y and u, be a n-universal element in F(Y). VA € F(S"*!), we consider a copy of S"*!
named S}*! and we construct Y v \/, Sy

Furthermore, if n > 0, Ya € m,(Y') with T, («) = 0, consider a representative f, : S™ — Y and
attach a cell e?™! to Y using # = f(x) € Y, Vo € de? ™! = S™. We define Y":

Y =y et v \/ syt
a A

Now, consider the following map

g: \/ Se =Y
(0%
gotla = fa
then, we get using D" =~ C(S™ 1) that
Y = (\/Si vy) v, e\ S8)
[0

A

It is thus the mapping cone of g. Thus, using [2.2.4] we get that

FO\/ 52 2 piy v \/ sptt) Sy
e A
is exact.
Furthermore, using W) on F(Y v \/, S¥), we get that Jv such that v|y = u, and U|S;L+1 =\
Then,
F(g)(v)lsp = F(g9)(un)lsy = F(fa)(un) = Tu,(a) =0
Thus, v € ker(F(g)) = Im(F(j)). Thus, Ju,+1 € F(Y') with u,~0+1|yv\/A gp+1 = 0.

Now, let’s show that u,+1 € F(Y’) is n + l-universal. Considering the following commutative
diagram:




e g <n: Using the s.e.s

0—0=m(\/ S5) = my(Y) B (Y o, C \/S”
«
We get iy : mg(Y) = (Y ug C(V, S%)) and with the wedge axiom on homotopy and
mq(S™) = 0, we get that i, : m,(Y) = m4(Y”). Thus, because our diagram commute and

T, is also an isomorphism, we get that Ty, , is an isomorphism.

e g = n: Similarly, to before, we have that

\/Sn — (Y —>7TnYUg \/S”

and using 7,(S" 1) = 0, we have that iy : 7,(Y) — 7,(Y”) is an epimorphism. From our
diagram, we had that T, , was surjective.

Now, suppose 33 € m,(Y"), T, (8) = 0. Since i is surjective, we consider « € m,(Y), ix(v) =
B. Then, using

Ty, () = Ty © ix(a) = TunJrl(ﬁ) =0

We can thus consider the cell e?*! € Y’ and f, : S" — e’*! a contractible space, which
shows us that i,(«) = 0 and thus T,

uni1 1S Injective.

o g=n+1: YAe F(S™),
Tpir (0x) = F(ix) (Ung1) = A

with iy : S”H — Y’ the inclusion. Thus, T,

uns+1 18 an epimorphism for ¢ = n + 1.

227

The later lemma induce the following corollary

Corollary 2.2.8.

Let F be a contravariant functor|as defined earlier|.

VY € Ob(CW) and Yv € F(Y'), we can find a CW complex Y' containing Y and a universal
element w € F(Y') with uly = v.

Proof of Corollary

We take Y_; = Y, u_; = v. Using inductively the previous lemma[2.2.7 we construct a sequence
{Y,} and {u,} st. Yoy cYpc Vi - and uply, , = up—1.
Then, consider

U v

n=>—1

Using lemma because {u,} € colim F(Y},), we consider u € Y’ s.t. {in}(u) = {un}.
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Now, let’s show that Y’ and u are universal. We consider ¢ < n and the following diagram:

g (V) — oy (V)
F(89)

Because Y'\Y,, is composed of cells of dimension greater that n ﬂ we have that, similarly to the
proof of the lemma [2.2.7] i} is an isomorphism for ¢ < n. Thus, so does T;,. Because we can
choose n freely, we get that u is universal.

LR22ZF

Now that we have a notion of universality on sphere, S?, we want to extend that on all CW
complexes, like for To do so, consider the following lemma.

Lemma 2.2.9.

Let F be a contravariant functor |as defined earlierl and Y be a space with universal element
ue F(Y), X,A € O(CW) with A ¢ X. Let g € CW(AY) and v € F(X) such that
vla = F(g)(u). Then, 3h e CW(X,Y) such that h|a = g and v = F(h)(u).

Proof of Lemma |2.2.9
we define the following sets

T = ((IJr AA)vaY>/~With (0,a) ~a€ X and (1,a) ~ g(a) €Y

Ar = ([0,1/2]" A A) U X, Ay = Y Uy ([1/2,1] A A)

Then Ay U Ay =T,A1 n Ag = {1/2}7 A A =~ A. Using [0,1/2] ~gom {0}, we get f1; 41 — XH
an homotopy equivalence and same with fo: As —
We thus have that 30 € F(A;) with U|x = v and Ju € F(As) with @]y = u. Furthermore

Olaina, = F(f1)(v]a) = F(f1) o F(g)(u) = F(f2)(u) = la;na,

Thus, using MV), we get that Jw € F(T) with w|x = v,w|y = u.
Now, using corollary we can extend T into a CW-complex Y’ with an universal element
uw' € F(Y') with «/|p = w. Using j : Y < Y’ the inclusion, we get that

F@)') =uly =wly =
Thus, using remark we get that VYn e N

Ju (V) = m, (Y).

9by construction, see lemmaE
1Of1(t7a) = a”f|X =1d
HfQ(t,a) = g(a)7f|y =1d
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Now, let’s consider the inclusion i : AA It < T < Y’. we can see that it is in fact an homotopy
between iy : X — Y restricted to A and j o g. That is ix|a ~Hom j © g- Using the homotopy
extension property we get that 3g: X — Y/ such that jog =g|4 and ix ~ 7.

We thus have the following commutative diagram:

y —L sy
g g
A—t o x

with j a weak homotopy equivalence. Then, using Whitehead theorem [[.4.17] we get that j is an
homotopy equivalence with homotopy inverse j. Then, we define h = j o g and by construction,

joh ~gom G ~Hom tx. Thus:

F(h)(u) = F(j o h)() = Flix)() = v
(1229

Theorem 2.2.10 (Brown’s representation theorem).
If F: HoCW — Gp is a contravariant functor satisfying W) and MV), then there is a classi-
fying space Y € Ob(CW) and an universal element u e F(Y) such that

To:[-Y]=F

is a natural equivalence.

Proof of Theorem [2.2.10)
Let {*} be the base point. Using corollary we get that 3Y € Ob(CW) with an universal
element u € F(Y). Now, let’s show that

T, : [X,Y] - F(X)
is bijective VX € CW.

o surjective: Let v e F(X). We consider A = {x} and g : A — Y the base point function.
By [2.2.2] v[a = 0 = F(g)(u) Then, using lemma [2.2.9] we get that 3» € CW(X,Y) such
that h(x) = % and Ty (h) = F(h)(u) = v.

Thus Ty, is surjective.

e injective: Let Ty,[go] = Tu[g1] for two maps go,g1 : X = Y. Let X' = X A [T, A’ =
X A {0,1}* and
g: A Y
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9(x,0) = go(x), g(z,1) = g1(x).
We also define
p: X' - X
p(z,t) =z
and let’s consider v = F(gg) o F(p)(u) € F(X'). Then

vl x gyt = F(90)(w) = F(g9)(u)|x a0+
vlxaqyr = F(90)(uw) = Tulgo) = Tulg1) = F(g1)(u) = F(g)(u)]x rq1}+
This means that v|4 = F(g)(u)

Then, using lemma we get h € CW(X',Y) such that hla = g. But then h is a
homotopy between gy and g;. Thus, T}, is injective.

To show the naturality part, consider f € HoOCW (X, Z) and the following diagram:

x,v] L) px

I F(f)
12,v]—LlZ) . p(z)

This diagram commute: T, (f*(1)) = Tu(uo f) = Fluo f)(u) = F(f) o F(u)(u) = F(f) o Tu(p)
(12210

Now, that we know that we can represent covariant functors F' that follows W) and MV), can
we represent natural transformation between them? The answer is yes.

Theorem 2.2.11.

Let F, F' : HOCW — Gp be contravariant functors with classifying space Y,Y' and universal
element ue F(Y),u' € F(Y').

If T : F — F' is a natural transformation, then 3![f] € [Y,Y'] such that the following diagram
commute:

[X, Y] —L— [x,v7]

Tu(X) Ty (X)

P(x) —L&) | prix)

Furthermore, if T is a natural equivalence, then we have that f is an homotopy equivalence.
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Proof of Theorem [2.2.11}
Consider [f] € [Y,Y”] such that

T(Y) o Tu(Y)(idy) = T (Y)([f])
Then, T (Y)([f]) = F'(f)(w') = T(idp(Y)) = idpr(y) and thus
Ty(X) o fe(p) = F'(fop)(u) = F'(u) o F'(f)(u) = F'(p) = T o To(X) (1)
For the unicity part, suppose g, is such that the diagram commute. Then,
T, (Y)(g) = T,(Y) o g« (idy) = T o T,,(Y)(idy)
That is, [g] = [f]

If T is a natural equivalence, then using the diagram, we have that fy : m,(Y) =~ m,(Y”’) and
thus, using Whitehead spectral theorem [1.4.17] we get that f is an homotopy equivalence.
2211

Remark 2.2.12.

If we have proven Brown’s representation theorem for contravariant functors into Gp, we can
see that our proofs don’t require any group structure. So Brown’s representation theorem works
also (and was historically first proven) for

F : HoCW — Set
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2.2.2 Consequences on spectra

Now that we have proven Brown’s representation theorem, we want to see what consequences
this gives to spectra. To do so, we need to define a subcategory of Sp.

Definition 2.2.13 (Q-spectra).
We define an Q-spectrum as a spectrum E such that duals of p, using

A: [EEm En+1] = [E’I’La QL?n+1]

named pl, : E, — QEnHE are weak homotopy equivalences.
In fact, we define the subcategory 2Sp < Sp:

Ob(QSp) = {E € Sp| E is an Q-spectra }
QSp(E, F) — Sp(E, F)
and the subcategory HoS2Sp < HoSp:
Ob(HoSp) = Ob(N2Sp)

HoQSp(E, F) = [E, F]

One very important property of (2-spectra is that the expression of their induce cohomology is
greatly simplified.

Theorem 2.2.14.
If E € QSp, then Yn € Z, we have a natural isomorphism

(=) : BY(=) = [, Ba).

Proof of Theorem [2.2.14
Let k"(X) = [X, E,]. We consider the following natural equivalence chain

s~

A p
[EX, En+1] - [Xa QEnJrl] — [Xv En]

>~

e

This induce o : k"T1(¥—) =~ k*(—). Furthermore, YA < X, the sequence

(A, En] <= [X, E.] <= [X U CA, E,]

Plpn] = Alpn]
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is exact from 2.2.7] and 2.2.4
Thus, k* is a cohomology theory on HoCW. Since for an collection {X,}aeca is such that

{i2} - [ \/ Xa» En] = | [[Xa Enl
(6% «
using k* follows the wedge axiom.

Now, let’s construct our 7" : k™ — E™. Let f € CW(X, E,). We define the spectrum %% X

with
== B x k<n
(= X)k_{ SErX kzn

This is a cofinal subspectrum of X7"¥* X and we use it to define a map
f:Y7"Y*X - FE

?: [Eioonf/] with f/:("' 7*7f?2f722f7"')

T([f]) = [E"f] € [E*X,X"E] = E"(X)
We see that T™ is well defined. indeed, if f ~gom g using h: X A It — E,, then maps
h:Y"SPX AIT > E
h=[S°X AIT W], = (h,Zh,---)

is an homotopy between f and .

Furthermore, by considering the following diagram, we see that it commute.

0—7’1

[X’ En] [EX, EnJrl]
T(X) T (2X)
n
[S%X, SN E]| et [Z*3X, 5" E]

Insuring that 7™ is a natural transformation.
Now, for the isomorphism part, using the following commutative diagram:

T (En+k) z T+ 1(EEn1k)
(P (P )«
A
Tk(QEp1k11) == s 1(Enrk+1)
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we get the isomorphism
k" (S%) = mo(Ey,) = colimy, my(Fpyx) = colimy my_pn(Ey) = m_,(E) = E™(S°).

Meaning that for all n € Z, T™(S°) : k*(SY) =~ E"(S°).
Thus, by using theorem [1.4.24] we get that T™ is a natural equivalence.
2214

Similarlely to we can lower the requirement to construct an ) spectrum.

Proposition 2.2.15.
Let {E,, pn}nez be a sequence of CW complexes with py, : En, — QFE, 11 weak homotopy equiva-
lence. Then, IE" € Ob(Sp) an Q-spectrum such that there is a natural isomorphism.

E"(=) = [~ En]

Proof of Proposition

Using A : [XE,, Eny1] = [En, QE,+1], we consider p,, : ¥E,, — E,, 11 such that A([p,]) = [pn]-
Then, using lemma we get E' € Sp such that r, : E), ~gom En. Now, let’s show that E’
is an -spectrum. For this, take ]ro\’,; € A[:]. The following commutative diagram gives us our
wanted result:

T (Ey,) Tk (UE, 1) % Trs1 (B 1)
(7n) (S
Dn
() s (B 1) e 1 (B1)

Thus, E’ is an Q-spectrum. Now, using theorem [2.2.14] we get that
Em(_) = [_’E;L] = [_’En]
(] P2

We can now prove an extension of Brown’s representation theorem for cohomology.

Theorem 2.2.16 (Brown’s theorem on cohomology).
Let k* : HoOCW — Ab be a reduced cohomology that follows the wedge axiom. Then, IE € QSp
and a natural equivalence

T: E*(-) = k*(-)
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Proof of Theorem [2.2.16

Let F = k"(—) : HOCW — Ab. By we have that F follows the MV). Then, by using
Brown’s representation theorem|2.2.10] we get that 3E,, € Ob(CW) and a natural transformation
T,, such that

Now, we have natural equivalences

[X, QB 41] 25 [£X, Bypa] —5 kH(EX) D R (X) s

~

Then ¢, : E, — QF,41 with [¢,] = Ao T, jl ool oTy([idg,]) and v, : QE,,1 — E, with
[¢n] =T, ' oo 0Tyt 0 A Y ([idag,,,]) are such that:

[¢no¢n] AOTnJrlloJ oTn[d]n] AoTn+1 OTnOTgloUOTn-i—lOAil[idQEn.H] = [idQEm_l]

[Ynogn] =T, oooThii0A o] =T, ' oooThi o A AT, L oot o Ty lidg,] = [idE, ).

Therefore, they are weak homotopy equivalences.
Thus, {E,, ¢,,} induce by proposition [2.2.15{that IE" an Q-spectrum such that we have a natural
equivalence
E™ (=) = [, Be] = k*(-)
L]

Now, to go further in this subject, we need the following lemma used to ease the following
constructions.

Lemma 2.2.17.
Let E,F € Ob(Sp) and let {fn : En — Fulnen. If Ep = % forn < N and if ¥’ fr, ~Hom fot+1lyE, -
Then,

3f:E—>F

fn ~Hom fn

Furthermore, if Yn = N, lim* F*~ YE,) =0 |as defined hereL then f s unique up to homotopy.
(7"6' ng : E — F with 9n ~Hom fn; then 9 ~Hom f)

Proof of Lemma
Take fn fn == for n < N. Then, by iteration, we have that ¥’ fn ~Hom [nt+1l3vE,. Thus, us-
ing the homotopy extention on CW complex [1.4.16, we can find f,+1 such that fni1 ~Hom frt1

and fos1|sE, = Sfa-
Thus, the collection of {f,} gives us a spectral map.

Now, let { E"},en be an increasing sequence of subspectra (a fibration) of E such that U,enE"™ =
E.
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Using [1.4:2T] we have Vm, g € N the s.e.s.

1
0 — lim F©"Y(E") — FI(E,,) — lim,FI(E") — 0
n

With and the fact that F, = % for n < N, we have that F9(E) = lim,, FI*N(E,, ).
Thus, because we have the s.e.s.

1
0 — lim FTN "B ) = FIN (Bpan) = limg FON(E] ) — 0
going to limit on m and using permutation of limit, we get

lim} Fa—1(E™) lim, F9(E™)

0 ——> limy,, lim} FI+N=L(En )~ FI(E) linyy, limy, FIPN(ET L ) —0

A more thorough look at the inner working of the proof, and details on this limit permutation

can be found in the proof of

Going along, we get the s.e.s.
1

0 — lim F©Y(E") —» FY(E) — lim,FY(E") — 0
n

Then, consider the fibration E™ defined as

B E, m<n
mo YT E. o m>=n

We have, using [2.1.47} the s.e.s.
0— 11711?1 F~YE™) - [E,F] — lim,F°(E") — 0.
Then, we see that X "X E,, is cofinal in E™. Thus,
FI(E") = FI(S"S%E,) ~ F" (S E,) = F"(E,).
Thus, because lim} F*~1(E,) = 0, we get that
[E,F] = lim,F"(E,)

[f] = limp[f]
proving the unicity up to homotopy of f .
L2217
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We can now look at an equivalent to [2.2.11] for cohomology.

Theorem 2.2.18.

IfE,E' € QSp and T : E*(—) — E™(—) is a natural transformation of cohomology theories on
HoCW, then there is a spectral map [ : E — E’ such that T,, = (X" )«

In fact, if T is a natural equivalence, then f is an homotopy equivalence.

Furthermore, iflim,ll E™"YE,) = ﬂ with im' [as defined herd, then f is unique up to homotopy.

Proof of Theorem [2.2.18}

Consider T}, : E"(—) — E™(—). Using theorem we get the unique [f,] € [Ey, E/,] such
that T,, = (fn)«. Now, we have to show that Xf, = f+1|xE,-

By considering the following commutative diagram:

(En, ) = [SE,. £E,]
(Pn) = bx
Afl
[En, QE7, 4] [XEn, E7, 4]

We get that that 3g, : E, — E! such that [¥g¢,] = [fn+1|ng,]. Then, using the following
commutative diagram

o1 Ly O
[X, B, =———= E"(X) &————— """ (3X) <= [2X, B! «<—— [ X, E,]

(fn)* Tn(X) Tn+1(EX) (fnJrl)* (gn)*

U/—l Ly O DM
[X, B =———= E"(X) &———= " (X)) < [2X, B «<—— [ X, E/]

gives us by unicity of f, up to homotopy that [f,] = [gn], which means that [Xf,] = [Xgn] =
[frrilsE, ] ie.
Efn ~Hom fnJrl‘EEn

n

can use [2.2.17, We thus get a spectral map f: E — E' (with f defined on E®) such that
fn ~Hom [ Then:
130r simply, colim,[E,, E,] = [E, E'].

141f it is apparent why it work for n > 0, we can extend this to negative by induction by adding g, bellow fo,
we know that g, ~mom frn- At the end, for any n, we can find a suitable representative.

Now, using the cofinal subspectrum EZ, where E7 = E, for n > 0, EZ = # otherwise, we
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[27(=), 5" E] [57(=), E"E]
[, En] [ Bl
T
E"(-) E"(-)

gives us that f represent the natural transformation 7.
If T is a natural equivalence, then using that 7_,(E) = [Z7"S, E] = [S,X"E] = E"(S") and
the previous diagram, we get that
fo i n(E) =7 n(E)
and thus, using Whitehead spectral theorem [2.1.32] that f is an homotopy equivalence.
To show the unicity, using [2.2.17] we get that
colim,[E,, E/] = [EZ,E'| = [E,E']

We have by [2.2.11] that [f,,] are unique up to homotopy and therefore so is f.
2218

Note that, contrary to Brown’s representation theorem, we don’t always get unicity of our map
up to homotopy. Let’s now define the following category of reduced cohomology, called stable.

Definition 2.2.19 (Stable cohomology category).
We define the stable cohomology category cohomg:

Ob(cohomg) = {h*(—)| h*(=) is a cohomology that follows the wedge and WHE axiom}

cohomg (h*(—),k*(—)) = {T :h* (=) = k*(=)| T is a natural tmnsformation}

71



Then, using the previous two theorem, we get the following theorem.

Corollary 2.2.20.
Using the following functors
V : Ho2Sp — cohomg

E — E*(-)
f— (Enf)*

W : cohomg — Ho2Sp
h*(=) — E given by
T — f given by[ZZTH

We get an category equivalence
Ho2Sp =~ cohomg

Although a very nice and powerful result, we are not fully satisfied with it because we are dealing
with ©Sp and not Sp.
To extend our result, we need this topological result.

Lemma 2.2.21.
Let X € Top, be compact, {B;}ien be a sequence of Ty pointed topological spaces such that
B; — B;.1 is closed. We can define colim B; = B € Tope,. Then

colimeny Hom(X, B;) ~ Hom(X, B)

{fi}ien — [ with f(z) = colim{f}(z)

Proof of Lemma [2.2.21
wlog, we may suppose that B = | J,.y B; and that B has the topology of the union. Then, the

B; are closed and A is closed <= Vi, A n B; is closed in B;

If the injection is trivial, we still have to show the surjection. Let f be such that it doesn’t
factors through. Now, let dy € B. Then, Jip s.t. dy € B;,. Then, consider f~1(B;,) a closed
subset of A. We consider kg € X\f~1(B;,) and di = f(ko). Ji1 > ig such that dy € B;,,---

We thus have an increasing sequence of 4, with f(k,) € B;, ,,. Then, we define S, = {f(kn+i)}ien ©
f(X). Sp n By, is a finite union of points. It is thus closed.
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We see that finite intersection of () Sp, # @ but [,y Sn = @, which contradict the fact that
f(X) is compact because image of a compact.
(12227

Corollary 2.2.22.
Let {B;}ien be a sequence of CW-complexes B; — Bji1 (with cellular maps). Then

colimiery QU(B;) = Q(colimiey Bj)

Proof of Corollary[2.2.22

this comes from the fact that S' is compact, that subcomplexes of CW-complexes are closed
and that they are Hausdorff.
12222

Then previous corollary allows us to demonstrate the following theorem.

Theorem 2.2.23.
Let E € Sp. Then we can find wE € QSp and r : E — wE an homotopy equivalence.

Proof of Theorem [2.2.23
Let pp, : B, — QF,,1 be the dual of p, : E,, — E, 1 by A. Then we define

E! = ColikakEnJrk

using Q¥ (pgr) 1 QEip — QFIE, 1 Thanks to the previous corollary [2.2.22] we get
that

QF!

el = Q(colimpQ* E, 14 1)

colimy, Q(QkEn+1+k)
= COhmk Qk+1En+1+k
= COIirn]€ Qk+1En+k+1
= COliHlkl Qk/EnJrk/

- E

Thus, using this homeomorphism p/,, we can use proposition [2.2.15 on {E!,p),} that give us
wE € QSp such that wE*(—) = [—, E/].

lle

We know that

(WE)n = Ey a{n}t o || S 7B A [k k + 107

k<n

151t is indeed injective. Using the nature of A(f) = f, f(z) = f(y) < f(z,2) = f(y,2) =z =y.
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Then, by using ¢, : B, < colimyQFE, 1, = E! the standard injection, we can construct
rn: Enp — (WE),

() = tn(@) A {n} U | | D" F (@) A {k)

k<n

Then, we have that

Sra(@) = (@) A {0} 0 Len =" Fur(@) A (1))
= Sun(@) A {1} Loy B () A (R}

= TTLJrl’Z(wE)n

Thus, we have a spectral function r : £ — wFE
Now, to prove that r is an homotopy equivalence, we will consider the following diagram:

Ty

7n(E) Tn(WE)
T
mo(EL,)
o mo( colimpQFE_, 4 1)
U
colimymo(Q¥E_, 4 1)
A

colimpy 41 (E),) == colimymy,(E_y,+)

with T given by U given by [2.2.:2T] applied at the homotopy category.
Thus, we have that r is a weak homotopy equivalence and thus an homotopy equivalence by

using Whitehead spectral theorem [2.1.32
L2223

In fact, the construction of wE can be made into a functor, named spectrification [¥] We thus
get the following result.

6 details can be found in [GIMST06], page 3-10
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Corollary 2.2.24.
Using spectrification w : HoSp — HoQ2Sp and the forgetful functor U : HoQ2Sp — HoSp, we

get a category equivalence
HoSp =~ Ho2Sp.

Combined with [2.2.20, this gives us that

HoSp =~ cohomg.

In fact, there exists a similar construction to show that homology on HoCW that follow the
wedge axioms and HoSp are equivalent categories. The proof is rather different from the
cohomology one, and quite interesting. It can be seen in [Swil7] 14.35.

Example 2.2.25.
Here are a view examples of representative spectra over cohomology.

o We can say that the singular reduced cohomology modulo A (ﬁ*(—, A)) 18 induced by the

FEilenberg-Mac line spectrum noted HA. More information on this family of spectrum
can be found in [AGPOS], 6.4.20. and in [Swil], 10.1-4.

o The spectrum S induce what is called the stable reduced cohomotopy. It is named that
way because the equivalent homology, S«(—) can be seen as

Sn(X) = (S A X) = 1o (2% X) = colimpmnin(X A SF).

Notation 2.2.26.
In case of Filenberg-Mac line spectrum, we will write HA*(—) for the induced reduced cohomology
and H*(—, A) for the unreduced one.
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Chapter 3

Vector Bundles and MU

Now that we have defined Sp and many of its properties. It may be time to define our central
notion, the MU spectrum To do so, we will need to study vector bundles and Thom
spaces. If the first is an old notion, dating back to the start of analysis on curves and more
generally on manifolds, the latter was introduced by René Thom during the 50s as a generalisa-
tion of suspension. Once this is done, we will explain why MU is such an important notion by
taking a look at the notion of universal bundles.

Then, we will find an interesting link between geometry on manifolds (especially cobordism)
and the MU spectrum using Thom-Pontrjagin cobordism isomorphism.

3.1 Complex Vector Bundles

3.1.1 Central definitions and Thom space

We will give in this section an overview of complex vector bundle theory, and how it relates to
some special manifolds, the Grassmanians.

Definition 3.1.1 (Complex Grassmannians).

We define the Grassmannian G(Ck i 8 equivalent ways. Those different definitions put light on
different aspects of the Grassmanian. If the first definition is the most abstract and simple one,
the second explains its links to other standard objects while the third puts greater emphasis on
its smooth structure.

1.
Gn r=1{Kc C""*| K is a linear subspace of dimension n }

ACGCk is open. — A= {K| K c U,U open in C"*}
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2. Using S¢, the n-complex sphere, we define

n

Gn,k _ 1_[ Sngkfl/N

=1

(3317"' >$n) ~ (yla"' ,yn) = span(xl,--- 73311) = Span(yb"' ;yn)

with standard quotient topology

&
ng = {M € Maty41n(C)| rank M = n}/~
1
1
M~N < HGl,GQEGln(C),MGlz 1 :NG2
a/171 e .. alyn
a’k71 DR ... ak’n

Proposition 3.1.2.

1. G§, =Cp*
2. GS, =Gg,

. Gg,k is a compact smooth manifold without boundary of dimension 2n

Proof of Proposition

1. From the second definition,
Gy =S¥/ =CP*

2. We use the first definition. Indeed, every vector space K of dimension n has a unique
vector space K’ of dimension k such that C"** = K @ K’. Thus

®: Gn,k = Gk,n

p(K) =K'

'We are working with manifolds in R, but it is in fact a nk complex manifold. Also, the fact that it is smooth
compact means that it is also a CW complex.
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3. From the second definition, we get the compacity part from the fact that S?**~1 is com-
pact. To construct our atlas, we take our third definition and 1 < i1 <9 < -+ < iy, < n.
We consider

Ui1,~~',in = {M € ng‘ Tk(Mihm,in) = n}
construct using the i lines of M. Then, we define

At U, = Cnk

1,0

with Mil,m g

n

Al ’i"(M) = MMZ:1 in and we send the k non trivial lines | into C™*

We have that our maps overlap perfectly on U;, ... ;, "Uj, ... ;, and using the rank theorem,
we have that every element is in one open of our atlas.

A= {(Ui1,~-,in’Ail’”"i")}
Thus, we have that Gg i is @ complex nk compact smooth manifold without boundary and
thus a 2nk real compact smooth manifold without boundary.
[

Now, let’s define complex vector bundles. In fact, we can define real vector bundles from this
definition by simply switching C for R.

Definition 3.1.3 (Complex vector bundle).
A complex vector bundle & of dimension n over the topological set B is the couple (E,p) with
E a topological set, p: E — B such that

1. Yb e B, 3U an open neighbourhood of b and hy : p~1(U) = U x C™ an homeomorphism
such that the following diagram commute:

p~'(U) -
X P1

U xC"

with p1 being the standard projection for product.

2. For any two such neighbourhood U, V., U NV # @, then considering hy the restriction of
hy, ho the restriction of hy . Then the composite

UAV)xC* 2 o A vy M A V) x O

is given by hy o hy 1(b, 2) = gu v (b)(2) with guv : U NV — GI,(C).

2That are actually given by the row reduced form
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Notation 3.1.4.
For a n-dimensional vector bundle £ : 2, B, we call

e B is the base space of €.
o F is the total space of .
o C™ is the fibre of £.

p is the projection map of €.

U, are called the trivial covering of &

gu,v are the transition functions of §.

Example 3.1.5.

e Let X be any topological space. the trivial bundle of dimension n over X (¢€"X) is
defined as E = X x C" and p : E — X the standard projection with transition functions
given by constant maps.

o Ifn =1, then we name a complex vector bundle over X as a line bundle over X.
o Let = be a singleton. Then any complex vector bundle over it is trivial, i.e. of the form €".

o We construct the tautological bundle. Let the base space be ng with total space given
using our first definition

E = {(x,v) € ng x C"k| v e :U}

p(z,v) =z

and with trivial transition functions. We denote this bundle of dimension n as '7;(3,/&

Definition 3.1.6 (Vector bundle isomorphism).
Let &1, & be complex vector bundles on X. We say that & is isomorphic to & if Af : 4 =~ FEs
and the following diagram commute

El E2
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Furthermore f|pf1(z) cpyt(2) = py H(w) s such that f|p1_1(x) € Gl (C). We say it is linear over
the fibres.

Now, let’s define a few basic tools on vector bundle.

Definition 3.1.7 (Induced complex bundle).
Let £ be a complex vector bundle over Y of dimension n with total space E and f : X — Y.
Then, we define the induced bundle f*(&) over X is given by

fH(B) = {(z,e) € X x E| f(z) = p(e)}

and with projection map py(x,e) = x. It is also of dimension n.
We also get the continuous projection

f:f*(E)—E
(x,e) > e
and the diagram commute
X / Y
by D
!
f*(E) E

Verification of Definition [3.1.7
This is working because for every open U that trivialise £/, we have that

P () = {(z.e) e X x Bl e p™ (U nIm(f)), ple) = f(x)}
But then using id x hy, we get that
p ) = {(aj,y,v) eXxY xC" , f(x)=ye U} ~ fHX) xC”

and because we haven’t touch to z, the diagram of the definition commute.
LBI1
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Example 3.1.8.
Let & be a n-dimensional vector space over X and let v : + — X be the inclusion map. Then

() ="

Definition 3.1.9 (Sum of complex bundle).
Let &1, & be complex vector bundles over X1 and Xo with total space Ey, Ey of dimension ny,no.
We define their external sum & x & over X1 x Xo given by

E1 X E2 pl—sz) X1 X Xg
It is a complex vector bundle of dimension ni + no
If X1 = X9 = X, we define the Whitney sum given by

§1 @& = A%(&1 x &)

with A : X — X x X the diagonal map. Its total space is given by

El (—BEQ = {(x,el,eg) e X x El X E2| pl(el) =T =p2(62)}

Proposition 3.1.10.
Let &1, & be bundles on X, f:Y - X, g: Z > Y

1.
idx (§) = ¢
%,
(fog9)*(&) = g"(f*(©))
3.

frE®@&) = fH(6) @ f* (&)

Proof of Proposition|3.1.10

This is an immediate consequence of the definitions.
(] B0
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Now, let’s consider an interesting case of induced bundle on 7, .

Proposition 3.1.11.

o Leti: Gg,k — Gg,k+1 be the map induced by ¢ : C"tF — CP*tr+1 Then:

o Letj: ng — GSH i be the map sending n dimensional vector space into n + 1 ones by
adding the vector enipy1. Then:

- C ~ ~C
3 (g1 k) = Yng De

with € = e(ng)

Proof of Proposition|3.1.11

1. We consider the total space of i*(w;(;k 1)

E = {(x,e,v) € ng X GS’kH x C""FHy e e e = ple,v) = i(z) = x}

p(z,e,v) =z
But this i
Enr = {(az,v) € GS,k; x C"*F| v e :c}
p(z,v) =z
Therefore,

i*(’ﬁCL,kH) = ’Yg,k
2. We consider the total space of j*(7§+17k)
E = {(x,e,v) € GSJC X GSJrLk x C" Hy e e e = ple,v) = j(z) = 2® < epypps1 > }

p(z,e,v) =x

This is equal to
E = {(:r,v,z) € ng x C"k x Clv e e}

p(z,v,2) =

3using the fact that z is contained in C"**
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that can be written as
E = {(93,1/173/2,0,2) € Gg,k x Gg,k x Gg,k x C"HE x Clvey,yp=z= y2}

p(z,y1,y2,0,2) =

which is the total space and projection map of VS,k @ e. Thus,
. C C
]*(ryn+1,k) = Tn.k De.

LBTIM

Consider C* = colim,,C", the sets of all finite sequence in C. We use C* to define properly
the infinite Grassmannian.

Definition 3.1.12 (Infinite Grassmannian and its vector bundle).
Using iy : ng — Gg,kﬂ’ we define the infinite k-Grassmannian GS:

C . C
G,, = colim G
GS = {K c C*| K is a linear subspace of dimension n }

Note that if GC is still a CW complez, it is no longer a manifold.
Using 1, given by we define the n complex vector bundle

C g C
Vi = colimy Y, .-

It can be defined as:
E = {(z,v) € GE x C*®v € z}
p(z,v) =z
Using i : ng — G, we get that
() = Tk

Similarly to ng, the map j : GS — G£+1 given by colimit of ji : ng — GC

1k nduce that

F*(1541) =S De
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Now, before continuing, we need to define an important notion, paracompactness.

Definition 3.1.13 (Paracompact).
Let X be a topological space. We say it is paracompact if:

1. X is Hausdorff.
2. X s locally compact.

3. X is a union of countable union of compact subspaces.

Example 3.1.14.
The following spaces are paracompact.

o Compact Hausdorff spaces.
o CW complexes.

e Metric spaces.

Proof of those assertion be found in [Hat03], page 35-37.
Now, let’s define the notion of partition of unity.

Definition 3.1.15 (Partition of unity).
Let X € Top and let U = {Uy}aea be an open cover of M. A partition of unity subordinate
to U is a family of continuous maps {a}aca with ¥y : X — R such that:

o Vz e M,Vae A, 0 < ¢y(x) <1.

supp(va) < Ua.
o Vo e M,3 ng €N such that 3, 4y Yal(x) = 207 Yo, (2).

Vee M, Y, caValz) =1.

Paracompacts are very important because they induce partitions of unity.

Theorem 3.1.16.
Let {Uy} be an open covering of X a paracompact. Then, I{wns} a partition of unity on {Uy}.
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A proof is given in [Brel3|, chapter I, 12.11.
Now that we have refreshed ourselves about paracompact, let’s go back to our vector bundles.

Definition 3.1.17 (Hermitian metric on complex vector bundle).
An Hermitian metric on complex vector bundle & with base set X is a continuous map

<——>ExE—->R
such that Vx € X,
<—,=>p (z) xp '(z) > R

s a positive inner Hermitian product.

Lemma 3.1.18.
Let X be a paracompact. Then, for any complex vector bundle & on X, we can give & an
Hermitian metric.

Proof of Lemma |3.1.18
First, Let’s show that every trivial complex vector bundle has a metric. Take

p: X xC"—> X

Then, for any positive definite Hermitian matrix H of dimension n, we can define an Hermitian
metric given as:
<v,w >p= v Hw

For v,w e p~!(z) = {z} x C"
Now, Let £ be any complex vector bundle on X a paracompact. Then, let’s consider U the open
subsets of X given by £ such that the following diagram commute

p~1(U) ! U

hy n

UxC"
Then, we can construct on p~(U) an Hermitian metric given by
<v,w =< hU(U), hU(w) >T

For v,w e p~!(z),z e U.
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Now, because X is a paracompact, we get that there exists a partition of unity {oy}. Then, we
can construct our Hermitian metric over E as

<e,f >=ZO‘U($) <v,w >y
U

with e = (z,v), f = (z,w). OBII8

Now that we have an Hermitian metric on our total space, we can define the following bundles
on it.

Definition 3.1.19 (Disk and Sphere bundles).
Let € be a complex vector bundle on B equipped with an Hermitian metric. Then, we define the
disk bundle D(&) on B the given by :

Ep = {(:U,v) € E| |v| < 1}

p=plep
We also define the sphere bundle S(§) on B with:

Eg = {(aj,v) € E| |v| = 1}

P =D|Es

Remark 3.1.20.

For every Hermitian metric we can associate to £, they induce the same metric topology
because every metric on C" are equivalent. Therefore, given two Hermitian metrics on &, we
have that the D(§) and S(§) induced would be homeomorphic. Thus, they are only defined by &.

Furthermore, if D(£) and S(§) are fibre bundles, they are not at all vector bundles.
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Example 3.1.21.

1. Consider €"X. Then:
D(e"X) = X x D¢

S("X) = X x S&

2. Let &1,& be two bundles with Hermitian metrics. Then, using the product metric, we get
that:

D(&1 x &) = D(&1) x D(&2)
S(&1 x &2) = S(&) x S(&2)

3. We have that
D(& @ &) = D(&) x D(&)/A

with
A = {(e.¢) € D(&1) x D(E)lple) # p(e))}.
Similarly,
S(E@&) =5(&) x S(&)/A
with

A = {(e,€) € 5(&2) x S(E)lp(e) # p(e)}-

4. Let & be a bundle on B with Hermitian metric and f : X — B. f*(§) inherit the metric
form &. Let v,w e p~Y(z), then

<v,w>p=< f(v), f(w) >

with f(v), f(w) € p~L(f(x)). We can therefore define the disk and sphere bundles. Fur-
thermore, the restriction

are well defined.

Proposition 3.1.22.
Let € be a complex vector bundle with base space X and total space E. Then,

X is Hausdorff compact = D(&),S(€) are compact too.
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Proof of Proposition|3.1.22

Because X is Hausdorff compact, we have an Hermitian metric. Now, let’s show that D(§) is
compact. We will prove this result using the that a space is compact if and only if every infinite
net has a convergent subnet [J]

Let {xx}A be an infinite net in E. Then, {p(z))}4 is an infinite net in X. Because it is compact,
there exists Aj such that {p(x))}a, converge into x € X.

Then, consider x € U with p~!(U) = U x D. Because {p(z))}a, converge into z, there exist
Ay such that {p(z\)}z; = U. Thus,

{oali < p ' (U)=U x D

Using 7 : p~!(U) — Dg defined using the standard projection, we define {r(x A)}a; a net of Dg.
By compacity, we get that there exists a subnet A9 such that it converge into v.
Thus, we get that {z)}z; converge into hg' (z,v). Thus, D(£) is compact.
For S(§), we simply see that this a closed set of D(§).
[

Now that we have disk bundles, we want to define something called the Thom space. This is an
extension of both the concept of compactification and of the concept of suspension as shown in

3.1.26| and in [3.1.24] Tt has many very interesting properties.

Definition 3.1.23 (Thom space).
Let & be a complex vector bundle over B equipped with an Hermitian metric. Then, we define
the Thom space of & noted T(§) € Ob(Top.) :

T(€) = (D(£)/5(8),8(€))

Furthermore, if f : X — B, using the fact that q : S(f*€) — S(&), this induce a map name the
Thomification of f:

with m the quotient map.

1A proof of this result is in [Pen83]
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Proposition 3.1.24.
Let X,Y be topological spaces. £1,& are complex vector bundles with Hermitian metric on X,Y

1.
T("X) = X+ A SZ
2.
T(&1 x &) =T(&1) A T(&2)
3.

T(& ®"X) =T(&) A S§"

Proof of Proposition
1. First, we have to see that for n > 1, we have
D¢ =~ D
S¢ = Ssgrt
DR/ = 5

Using this, we get that

lle

T(eX) = ((X % DE)/(X x $271), (X x 52°71))
X+ x (D2/STY) /X v (D3 /st 2

Xt A SH%”

lle

lle

2. We write D(&;) as D;, S(&;) as S;. Then

T(fl X 452) = (Dl X DQ/Sl X SQ, Sl X SQ)

((Dl/Sl,Sl) x (Dz/sz,sz)/(pl/sl,sl) v (Dg/sg,sz))
T(&) A T(2)

lle

D(& @€") = D(&1) x X x D /A
with A = {(e,z,v) € D(&) x X x D¢| p(e) =z}

Thus, we have that
D& @€") = D(&) x D
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Similarly, we have that
SE®e") = 5(&) x S¢

Therefore:

lle

(D(& X DQ”/S (&) x S2n1 S(&) x San 1)

((D §1)/5(&1),5(¢ )) x (Sﬁ",*)/( (&1)/8 (51),5(51)> v (Sﬁ",*)>
T(&1) A SE"

T @€e)

lle

lle

L BT24

Remark 3.1.25.

Let X be a CW complex, £ a n complex vector bundle on it. Then, we can give T'(§) a CW
structure.

Given a cell structure on X,{e? | a € Jn,}, then the cell structure on T'(§) is given by
{em*? | a € Jn}.

Full details can be found in [Swil7], 12.26.

Lemma 3.1.26.
Let X be a compact Hausdorff space, £ be a complex vector space on X with total space . Then,

we have that
T(£) = E

with BT = (E U {0}, ) the one point compactification of E.

Proof of Lemma[3.1.26
Because every Hausdorff compact space is paracompact, we can define T'(§). Because X is com-
pact, we have, using proposition [3.1.22} that D(&) is compact and therefore so is T'().

Now, we have to see that E is Hausdorfl. Indeed, for e # ¢ € E. If p(e) # p(e’), then
ple) € A, p(e/) € A’ and we get e € p~1(A), & € p~1(A), p~1(A) np~1(A4) = @. If not, then
e = (z,v'),e¢ = (z,w). Then, because C" is Hausdorff, we have that v and w are separated and
thus so is e and €’

Now, consider
a:[0,1] - Rs v {oo}

tan(Zt) 0<t<1
O‘(t):{ (2oc)> t=1
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We construct
f:D() - Ef

fe) = alle]).e
This is a continuous map such that f : D(£)/S(¢) = T(¢€) — E is a continuous bijective function
from a compact into an Hausdorff spa,cerf]. Thus, f is an homeomorphism.
]

Now that we know what are Thom space, we can finaly define the MU spectrum.

Definition 3.1.27 (MU spectrum).
Because GS is a CW complex, it has an Hermitian metric. Having MU (n) = T(7S), we define
the MU spectrum:

(MU)—n = {}
(MU)2n = MU(n)
MUsps1 = SMU(n)
with
P2an = s MU (n)

pons1 = T(G) : Z2MU(n) = T(5* (ns1)) = MU (n + 1).

A good question is why are we so interested in MU. It looks like any other spectra. To give an
element of answer, we will have to work on the notion of universal bundle.

3.1.2 Universal bundles

First, we want to show [3.1.30] To do so, we will need the followings propositions that simplify
the later work.

Proposition 3.1.28.

1. A wvector bundle p : E — X X [a,b] is isomorphic to the trivial bundle if and only if its
restriction p~1(X x [a,c]) and p~1(X x [c,b]) are both isomorphic to the trivial for some
c€ [a,b].

2. For a vector bundle p: E — X x I, there exists a trivial covering {U,} of X such that

P (Uq x I) = Uy x I x C™.

°If X is HausdorfT, then so does X'
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Proof of Proposition|3.1.28

1. =: By definition.
<: We have E1 = p~ (X x [a,c]), B2 = p~ (X x [¢,b]), and the homomorphism h; : By =
X x [a,c] x C™, hy : By = X x [¢,b] x C. Because they may not coincide, we define using

hiohy': X x{c} x C" = X x {c} x C"

q:X x[c,b] x C" = X x [¢,b] x C"
Q(aj?tv U) = ($7t7 hy o hQ_I(U))
Then, we define
h:E=x~X x[a,b] xC"

b hi(x) z e E;
qoh2($) T € E2

2. Yz € X, using compactness of I, we can find open neibourhood Uy 1,---,U;; and 0 =
to < --- <t = 1 such that the bundle is trivial over U, ; x [t;, ti11].

Then, by using the first point 1) on Uy = [, Uy we get that U, x I is trivial.

(BI28

Lemma 3.1.29.
Let X be a paracompact, then the restriction of p: E — X x I over X x {0} and X x {1} are
1somorphic.

Proof of Lemma(3.1.29

Let Ey = 1f(E), E1 = }(E). Using proposition [3.1.28] we have an open covering {Uy,} of X such
that FE is trivial over U, x I. Using paracompactness, we can then find a countable subcovering
H {V;} and a partition of unity {¢;} on {V;}. Thus, we have that F is trivial over V; x I.

Then, let ¢ = 3}5_o¢;. We define X; = {(z,£) € X x I| t = ¢(z)} and let E; = p~1(X;). We
have the following homeomorphism
X=X

(@, i(x)) = (2, Yi(z) — di(x))

This induce an isomorphism using the fact that £ is trivial on V;

hi : Ei = Ei—l

5This result can be found in [Hat03], lemma 1.21.
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id e X\V;
hi(z, bi(x), v) :{ (@, Yi1(z),v) €V,

Now, using the fact that g = 0 and lim; ¢; = 1,
h: Ey >~ lim E;
7

h=hyohyo---
gives us that
pHX x {0}) = pTH(X x {1})
[1B129

Corollary 3.1.30.
Let X be a paracompact, f,qg: X — Y be continuous functions and & be a complex vector bundle
on Y. Then:

f ~Hom 9= f*(§) = g% (§)

Proof of Corollary|(3.1.30
Let H : X x I — Y be the homotopy between f and g. Then, using lemma|3.1.29/on H*(&) we

get that
FH(&) = G (H* (&) = (H"(9) = 9"(¢)
LBT30

Now, we will refocus ourselves on CW complexes. They are by [3.1.14] paracompact, so they
follow all previous properties. Lets now define the following functor.

Definition 3.1.31 (Vector bundle contravariant functor).
Let X, Y € Ob(HoCW), f € [X,Y]. We define the contravariant functor of the n-dimensional
complex vector bundle VbE :

Vi< : HoOCW — Set

VbE(X) = Iso {€| € is a n complex vector bundles on X. }
VbR (LD = f*
fH(&) =r17¢

Proposition 3.1.32.
VbC follows W) and MV) azioms|as defined here,
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Proof of Proposition|3.1.32

e W): This comes from the fact that, when considering \/, X, and £ a complex vector
bundle on it, i, (€¢) = p~1(X,) and they muss agree on the base point. Thus, we have that

{iz} : VL (\/ Xa) = [ [ Vb5 (Xa)

e MV): Let A; U A9 = X and & be a bundle on Ay, & be a bundle on Ay. Suppose that
U i%, (&) = py ' (A2) = py (A) = i, (&)
Then, we can construct the wanted complex vector bundle on X as
E=F vy B
P =p1YvPp2

Further details can be found in [Swil7] 11.32.
(1BI32

Corollary 3.1.33.

Vn e N*, there is a unique CW complex (up to homotopy) named BU(n) and a unique complex
vector bundle u (up to isomorphism) on it such that

T, : [-,BU(n)] = Vb<(-)

Tu([f]) = [f*(w)]

We name BU (n) the classifying space and u the universal bundle.

Proof of Corollary(3.1.33
This is a direct consequence of Brown’s representation theorem on sets[2.2.12] The unicity part

is aconsequence of [2.2.11]
OBI33

Now, we want to show that -, is the universal bundle.

Theorem 3.1.34.
Consider GS. Because it is the colimit of manifold, which are CW complezes, it is itself a CW
complex. We also consider vy, the tautological bundle on GS. Then:

Ty, [, Grl = Vb (-)
That is to say, GS is the classifying space and 7y, the universal bundle. Hence, BU(n) ~ gom GS

n-
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Proof of Theorem
Let £ be a complex vector of dimension n on X with total space E such that £ =~ f*(~,), with

f: X - GS. Then, we have the following commutative diagram:

U . ]? ™
E=———f*(E,,) E,, C®
p
by D
X f G®

with 7 : (z,v) — v. Then, we can define
g: E—C”
g=mo f~ ou.

We note that ¢ is a linear injection on each fibers. Inversely, if such a g existsﬂ then consider
f X -Gt

f(x) =g (z))

This gives us that
E = f/* (E'Yn)

using (z,v) — (z,9(p~ " (z)),v)

Furthermore, if g is defined using f, then

fll@) = wofo%p—l(x))

= Wof@f (z))
— rop ()
f(x)

Knowing that, let’s show that T, is a bijection:

e Surjective: Let & be a n dimensional vector bundle on p : E — X. Let {U,} be a trivial
covering of X. Because it is a paracompact, we can furthermore assume that {U;} is
countableﬂ and that we have a partition of unity {¢;}. Let

gi:p 1 (U) —C"

gi = p20 hy,.

"i.e. a map that is liner injection on every fibers.

8This result can be found in [Hat03], lemma 1.21.
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Then, using partition of unity, we extend those maps as
¢igi + E — C"
¢i(w)gi(xz,v) = di(x)v
We use this to define the g map
g:E—(C")*=C"
9(z,v) = (¢o(x)g0(z,v), p1(x)g1(w,v),- - -)

We see that g(x,v) is a linear injection on every ﬁbreﬂ Therefore,
€= f*(7), with f(z) = g(p™" ().

Injective: Let fo, f1 € [X, GS] such that f3(y,) = f5(ys). Consider go, g1 : E — C*. We
define the homotopy
LY:C* xI—C*
L?($1,$27333a o ) = t(fEl, Z2,X3, ) + (1 - t)(l'l,o, X2, Oa z3, - )

and consider g, = LY o go, ¢; = L§ o g1. We have that

/ /
9o ~Hom 90,91 ~Hom 91-

We define
Hy = tgy + (1 —t)g}.

This gives us an homotopy g; between g; and go such that g, is linear and injective on the
fibres.

Then, consider f; = g;(p~!(x)). It is such that
fo=fi=wofi, i=fl=uofi
OBI34

Corollary 3.1.35.
Let X € Ob(CW) and & be a n-dimensional complex vector bundle on it. Then

3f : T(€) — MU(n)

Proof of Corollary|3.1.35
Thanks to theorem [3.1.34) 3j : X — GT such that & = j*(v,,). Then, it simply suffice to take

f=T0).

[ BI35

9That is with z fixed
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3.2 Cobordism

Now that we know why MU is not a standard spectrum, we want to find, thanks to
which cohomology and homology it defines. Answering this question is the goal of the following
section.

To do so, we will give a description of a structure on manifolds named cobordism and show its

link with MU.
3.2.1 Reminders on manifolds

Before starting definition of cobordism, we remind ourselves of some constructions and properties
of smooth manifolds. On any manifold M, there exists the tangent bundle T'M, a real vector
bundle defined as

TM = {(x,v) e M xR ve TIM}

Full details on tangent space and bundle can be found in [Kos13|, 1.4 and 1.5.
But we can give a manifold another kind of bundle, namely the normal bundle

Definition 3.2.1 (Normal bundles).
Let W be a smooth manifold of dimension m and M be an n dimensional embedded submanifold
of W. Then, we define the normal bundle:

N(M, W) = {(:B,v) eM x TW| veT,W and vl TmM}

p(z,v) ==

The trivial covering is given by the atlas on our manifold W .
We have that N(M, W) is of dimension m —n.

In  case that M is a  manifold with  boundary, then, we  define
N(M,W) = N(int(M),W) extended by continuity onto its boundary.

Proposition 3.2.2.
1. The normal bundle is a smooth manifold of dimension m.
2. If W = R™, then, using ¢ : R™ < R™*L we get

N(M,R™) =~ N(M,R™) @ e (M)
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This interesting construction becomes essential in manifold theory using the following 2 theo-
rems.

Theorem 3.2.3 (Whitney embedding Theorem).
Let M be a n dimensional smooth manifold. Then M can be embedded into R*"+1,

Proof in [Brel3|, chapter II, 10.08.

Theorem 3.2.4 (Tubular neighbourhood theorem).
Let W be a m dimensional smooth manifold, M an dimensional embedded compact submanifold.
Then, 3T open neighbourhood of M such that

T ~ N(M, W)

Furthermore, M is the zero section of this diffeomorphism.

Proof in [Brel3|, chapter II, 11.04 and 11.14.

There also exists a variant of the tubular neighbourhood for boundary of manifolds, named in
this case collars.

Theorem 3.2.5 (Differential collaring theorem).
Let W be a compact smooth m manifold with boundary. Then, N(OW, W) = egr(dW) and 3T an
open neighbourhood of OW such that

T;aWXR>O

with OW the zero section of this diffeomorphism.
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Using those theorems, we can define some important operations on manifolds that are powerful
tools when handling manifolds.

Definition 3.2.6 (Smooth product).
Let M, N be smooth manifold with boundary with respective dimension m,n. Then, we define
the smooth product as giving a smooth structure on the M x N such that:

e p:M—>MXxXxN,p: N—MxN are embedding.

e O(M x N)=0M x N UM x oN.

Definition 3.2.7 (Gluing).

Let V,W be smooth compact n + 1 manifolds with boundary and M be a n smooth compact
manifold with boundary such that it is embedded into OV and oW . Then, we define the gluing
of V. and W alongside M as a smooth structure on V upy W, written

V#uW.

VH#uW is a smooth compact n + 1 manifold with boundary.

VA\M, W\M are smooth submanifolds.

L: M — V#yuW is an embedding.

OVH#uW) =0V\M| |OW\M.
We also need a theorem of approximation on smooth functions.

Theorem 3.2.8 (Smooth homotopy theorem).

1. Let f: M — N be a continuous function between 2 manifolds. Then,

3f : M — N a smooth map such that f' ~gom f

2. Let H: M x [0,1] > N be an homotopy between 2 smooth maps f and g. Then,

IH : M x [0,1] = N a smooth homotopy between f and g

[Brel3], chapter II, 11.8. and [tD08] 15.8.4.
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3.2.2 Complex cobordism

Now that we have reminded ourselves of important results on manifolds, we can define what
is called complex cobordism. The main issue we have is that manifold with boundary are not
well defined for complex manifold. To solve this problem, we define the following structure on
smooth manifolds.

Definition 3.2.9 (Stably complex manifolds).
Let M be a smooth k manifold. We say that M is stably complex if for some n € N, there
exists an isomorphism such that

N(M, R2n+k) ~ ¢

with & a n complex vector bundle. We usually note this (M,§).
In case M has a boundary, we say it is stably complex if int(M) is.

Remark 3.2.10.
1. Every complex manifolds of dimension n, seen as 2n real manifold, are stably complex.
2. If N(M,R?™**) is complex, then N(M,R2("+D+F) = N(M,R?"*) @ e = £ D ec

3. Because for any manifold M, TM @ N(M,R?" k) ~ 2"F()[), we get that we can give
for some u T'M @ e (M) a complex structure.

We can now define complex bordism.

Definition 3.2.11 (Unitary cobordism).

Let X € Ob(CW). Let (M,&n), (N,En) be n compact stably complex smooth manifolds,
f:Mt > X, g: Nt - X. We say that (M, &y, f) is unitary cobordant to (N,&n,g)
if there exists (W, &w, F) with W a n + 1 compact stably complex manifold with boundary em-
bedded in R**T+1 gnd F : W+ — X such that:

1. oW =MuN

3. N(M,R*WHnHh) ~ % ()@ ter = EPel @ +ter with eg given by the induced orientation
on oW .

4. N(N,R2WHHL) > % (E) @ Fer = &y D €l @ Fer with e also given by the induced
orientation on oW.
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In 3. and 4., the isomorphisms are such that Vo € M or N, ¢|,~1(,) € Gl3,, 1 (R). The e are
used to make sure that dimension agrees.

Unitary cobordism is an equivalence relation, written ~cop-

Verification of Definition [3.2.11

1. identity: For (M,&, f) with N(M,R**F) =~ ¢ consider M x [0,1] with F(x,t) = f(z).
We have to show that M x [0, 1] is stably complex and that vector bundles agree. This
comes from that M x (0,1) = M x R. Then, we see that

N(M x R, R+ ~ N(M,R*"F) x R~ ¢ xR

This is an abuse of notation but we see it is is a complex vector bundle.

We have that
N(M x {0}, R¥*FFH) > N(M, R ) @ e ~ ED e

and it is well oriented. Similarly,
N(M x {1}, R¥*FH) ~ N(M,R¥"F) @ —ep = £ D —er.
Thus, using (M x [0,1], F), we get (M,&, f) ~cop (M, &, f)
2. reflexivity: By definition.

3. Associativity: Let (W1, &1, F1) be the cobordism between (M, &y, f) and (N, &n, g), (Wa, &, Fo)
be the cobordism between (P,{p,h) and (V,&n, g). Then, consider

Wi#NWo
F = F1 UN FQ.

This gives us the wanted bordism, but we still need to show that Wi#nWs is stably
complex. For int(W1#nxWs) = Wi 1 Wa 1 N. Using there exists Y = Y] uy Y5 an
open of W1# nyWa such that Y = N(N, W;) =~ N(N, Wy). Then, using the fact that

N(N(N, W),R“) ~ JNN(W,RY)
We see that 3n e N
N (int(WignWa), R = N (W, RPHEED) O N (W, R O N (Y RPHE

which has a complex structure because union of complex vector bundle that are the same
on their intersection. The fact that boundary conditions are respected comes from the fact
that we have not changed in a substantive way the boundary (at worst, we have added an
even number of trivial bundles). Thus, we get that

(M, &1, f) ~cob (P, 6P, f)

LJB21T
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Figure 3.1: Cobordism W between M = S2 and N = (S} x Sg) [Bar09].

Having this equivalence relation, we use it to construct the complex bordism group.

Definition 3.2.12 (Unitary bordism group).
Let X € Ob(CW). We define the n unitary bordism group on X as

oY(x) = {(M, &y )M compact stably complex n-manifold , f : M™ — X}/NCob

[Ma§M7f] + [N7£Nag] = [M U Na&M l—‘&N,f l—lg]
Thanks to Whitney theoremm this is a seﬂ. In fact, QU(X) is an abelian group.

From now on, we will drop writing {37 in (M, &y, f) when it is clear from context.

Verification of Definition [3.2.12
To show that the addition is well defined, consider (W, F') a cobordism between (M, f1) and
(M, f2), (Wn,G) a cobordism between (N1, g1) and (N2, g2). Then,

(Wy u Wy, F U G) is the cobordism between (M u Ny, fi ug1) and (Ma 1 Na, fo Ui g2)

Every other axioms of group is quite easy to show. If the associativity and commutativity are
trivial, We can find the zero by considering 0 = [, @, f : *+ — X]. The inverse is a bit more
tricky. For [M, &y, f] with € n dimensional, we define [M, &y, f] with £y given by

i (Ear) = U x C*1
Then, the cobordism (M x [0,1],&«, F') as defined in proof of |3.2.11]is such that us that

N(M x {1}, R 1) ~ ), @ +ep = &4y @ Fer

TIndeed, we have that the set of all n-manifold can be seen as a subset of P(R*™1).
"Using complex conjugate = + iy = & — iy.
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Thus, (M x [0,1],&x, F') can be seen as a cobordism between (M 1 M, &y U v, f U f) and
(0,0, f % — X] =0. So [M,&u, f] is the inverse of [M, &nr, f]-
O B212

Definition 3.2.13.
We can in fact see QU (X) as a functor:

QU:CW - Ab
with QU (f) : QV(X) - QYU (Y)
Q) (N (M, €nr, 9]) = [M,€n. f o g]

Proposition 3.2.14.
If f ~Hom g, Then Qg(f) = er{(g)

Proof of Proposition |3.2.14
Let h: X x [0,1] — Y be the homotopy between f and g. Then, V[M, &y, 0] € QU(X), we get
that

[Man,fofb] = [M7§Mvgo¢]
For that, we use the cobordism
(M X [07 1]7 £>< I h(¢($)7 t))

and using £, same complex vector bundle as before. O B214

Theorem 3.2.15.
Let
QY : HoCW — Ab

Then, QU is an unreduced homology theory that follows the wedge and the WHE aziom as defined
in[L32

The following paper [Hopl6] is a proof this theorem.
Now that we have an homotopy theory, we want to find the spectra it is equivalent to.

103



3.2.3 Thom-Pontrjagin cobordism isomorphism

Here is a small result that will help us simplify the structure of bordism.

Proposition 3.2.16.
Let (W, F) be a cobordism between (M, f) and (N, g), both beeing embedded in R*"**. Then, we
can consider W as embedded into R2"F* x [0, 1] with W nR*"F x {0} = M, W AR?"*kx {1} = N.

Proof of Proposition|3.2.16

Because manifolds are metric spaces, we can use Urysohn lemma on the closed sets M and N.
Thus, we get
a: W —[0,1]

a(M) =0,a(N) =1 and « continuous

Then, using smooth approximation theorem, we can assume that « is a smooth map. Now,
because 0 and 1 are regular points, we get an open neighbourhood around 0 and 1. Now,
consider ¢; the smallest singular value and ¢ the biggest singular value. Consider

W’ = a7'([0,t1) L (2, 1])
This is a k + 1 submanifold with boundary ¢W. Then, because W is stably complex, then
N(W/ R2n+k+1) ~ L*N(W R2n+k+1) ~ L*f

and is thus stably complex and preserve boundary conditions. Then, we have that (W', F|y~)
is still a bordism. Furthermore, we define an embedding

frW s R¥MF < [0,1]
f(@) = (ta(z), ()

with ¢, the embedding on o~ !(¢).
(]

Remark 3.2.17.
We consider
O (X) = {(M, )] M e R*™F £ MY — X}/ 0,

with (M, f) ~cob (N, g) if IW a cobordism with W < R*"+k x [0, 1].
We can see that QU (X) is an abelian group and furthermore, we have that

QY (X) = colim, Qg’k(X)

with injection given by embedding i : R2nk < R2(n+1)+k
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Now, we define the cornerstone of this subsection.

Definition 3.2.18 (Thom-Pontrjagin construction).

Let M be a compact stable complex manifold. Consider T given by tubular neighbourhood[3.2.7).
We have ¢ : T = N(M,R***) = £ Then, secing & as int(D(€)), we extend this function onto
R2"*F by sending everything not in T on the sphere bundle. Using Thom space, we get

PSS (g
But then, using [3.1.35, we get what is called the Thom-Pontrjagin construction:

Oy : 52 2, ey Z9, pMu(n)

Thom-Pontrjagin construction has some very good properties.

Proposition 3.2.19.
1. This map is unique up to homotopy for a given M.

2. If we consider ¢ =~ N(M,R?**%)  then the Thom-Pontrjagin construction given on
N (M, R2H+D+k) 45 simply $2® .

3. If (M’ f) ~Cob (N’g)7 then ®pr ~Hom PN .

Proof of Proposition [3.2.19

1. First, on the choice of T', we have that they are all diffeomorphic to each others. Consider
T1, Ty two tubular neighborhood and let H : N(M,R?"**) x [0,1] — M be the homotopy
equivalence by retraction on the zero section. Then, consider the following map.

B proH(pr'(x),2t) 0<t<]
A(x’t)_{ pao H(py'(2),2t—1) 3<t<1

and Fy = A(Y1,t). Then, consider
pe s B — N(N,R*F)

o<t<i
bt = a1 1 2
©2 <t«<l1

5\

Then, by extending p; to all R2"*% we get the homotopy between @7 and B3

Now, for the second part, it is a consequence of [3.1.34] j is unique on homotopy and thus
so does T'(j).
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2. We have that N(M, R2"+D+k) ~ N(M,R?"*+F) @ ¢2(X). Thus, if T is the tubular neigh-
bourhood of N (M, R?"*¥) then T" = T'xR? is a tubular neighbourhood of N (M, R2(?+1)+k),
Thus @' = @ A idg2. Therefore, the Thom-Pontrjagin construction gives us

2k P e @ ec) = T(E) A 53— MU(n) A S3

And this just X2®,,

3. Let W < R2"+k % [0, 1] be a cobordism between M and N given by [3.2.16, Then, we apply
the Thom-Pontrjagin construction on W[} extended on M and N gives us a map

Dy - S2F % [0,1] — MU (n)
With @y 0ig = &y and Py 0ip = @y. That is to say, we have

Py ~Hom PN

[1B2T19
The Thom-Pontrjagin gives us therefore a morphism.
Definition 3.2.20 (Thom-Pontrjagin morphism).
Let X € Ob(HoCW), Then, we define the Thom-Pontrjagin morphism:
@ : QF (X) = monk(XT A MU(n))
Verification of Definition [3.2.20
This is indeed a group morphism because
u(f,9)" () = () L g* (1)
With p as defined on Then,
q)MuN . 52n+k ,U'(Sﬂlv‘PZ) T(fl) L T(€2) T(]l)'—‘T(]2) MU(n)
which is just u(®pr, Py).
Furthermore, ®g : 2% — + is the 0 of mo, 1 (X A MU(n)).
(]

In fact, this morphism can be naturally extended into a natural homology transformation

12T be exact, we define it on W; with t € (0,1) fixed and take the union of the tubular neighbourhoods.
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Definition 3.2.21 (Thom-Pontrjagin transformation).
Let X € Ob(HoCW). Then, we define the Thom-Pontrjagin transformation:

®: QU (X) - m(XT A MU)

[]\4‘7 f] N [272n20052n+k7 2727LEOOCDM]

seeing L2E° 82tk 45 g cofinal subspectrum of FS.

To go further on this natural transformation, we need to do a small detour on the notion of
transversality.

Definition 3.2.22 (Transversal maps).
Let f: M — N, g:V — N be smooth maps. We say that f is transversal to g if whenever

f(p) =9(q)

Df(T,M) + Dg(TyV) = Ty N

p)

with D f the smooth pushforward. We note transversality as fhg.

Proposition 3.2.23.
Let f: M — N, g:V — N, fhg. Then f‘l(g(V)) is a reqular submanifold of M.

proof given by [Kos13| in chapter IV, 1.4.

Theorem 3.2.24 (Thom approximation theorem).
Let f: M — N,g:V — N be two smooth maps.

3 M — N, f ~som f, Fhg

proof given by [Kos13| in chapter IV, 2.5.

Now, equip with this theorem, we can prove the Thom-Pontrjagin isomorphism.
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Theorem 3.2.25 (Thom-Pontrjagin isomorphism).

D : an(*) >~ Ton sk (MU(n) A S°)

Proof of Theorem [3.2.25}

First, mon 1k (MU(n) A SY) = mop 11 (MU (n)).

In this proof, we will use two small observations. First, we have that v, = colimy~y, ;. This
insure that MU (n) can be considered as

MU(n) = colimyT (k)
with injection given by T'(ix) : T'(Vnk) = T (Vn k+1)-

Furthermore, let’s consider 7, . We can give its total space {(x, v) € GS,C X (C”*k\ v E a:} the

structure of a k(n + 1) complex manifoldH Indeed, it is locally equivalent to U x C™ with U
open subset of GS . and thus also a manifold.

Now, let’s show ® is an isomorphism.

e surjective: Let f : S?"*% — MU(n). Then, using [2.2.21} we get that f is defined by a
map
f . S2n+k N T(’Yn,j>'

Because Gg ; is compact, |3.1.26| gives us that T'(yp,;) is just the one point compactification
of its total space E. We therefore consider the map

fli-1my U= By

with U < R?"*%_ Tt is thus a stably complex manifold. Then, using we get f:U —
E,, ; a smooth map such that

[ ~Hom [
Using we finally get R
[:U—>E,
fhGE;
f ~tom [

Now, consider M = ffl(ng). By [3.2.23] M is an embedded manifold in R?"**,

1330 it is a 2k(n + 1) stably complex manifold
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By thinking a bit at N(GSJ,E%J.), we see that it is just 7, ; by the structure of the

manifold E,, .. Furthermore, by GSJ has a tubular neighbourhood and it is just
E

Tn,j*

Using this, we get that:

1.
N(M,R*™ ) = N(M,U) = f*N(GS ;, By, ) = [*yn,j-

Thus, M is stably complex.
2. U = f~!(E,, ) is a tubular neighbourhood for M = f_l(GSJ).

Now, if we consider ®,;, we get that

g2ntk 2 T(N(M,R>"+F)) MU (n)

Thus, (I)M ~Hom f

injectivity: Let H : S?"*% x [0,1] — MU (n) be an homotopy between ®,; and ®y. Then,
using a similar reasoning than for surjectivity, we get a smooth map

H:Ux[0,1] - E,,
H 4GS
Then, W = H *1(GS’ j) gives us a bordism between M and N. Furthermore,

N(W7R2n+k+1) ~ f_j*N(G(C E’Yn,j) _ ‘E[*fyn,j

n?j’

Thus, W is stably complex.

[1B22H

Corollary 3.2.26 (Thom-Pontrjagin equivalence).

®:QU(X) = mp(XT A MU)

i.e., we have found a representation of the unreduced homology induced by MU .
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Proof of Corollary(3.2.26

We are working with unreduced cohomology. Due to the duality between reduced and unreduced
showed in we see that can be applied in the unreduced case. It thus suffice to show

®: QY (%) = mp(S° A MU)

To get this result, we see that 7, (S° A MU) = m,(MU) and using previous theorem [3.2.25] we
get

QU (+) ® me(MU)
a
P
colimy, an(*) colimy, mo,+x(MU(n))

(1B228

It is interesting to note that the computation of MU,(—) we have found is quite geometric,
because it study manifolds.
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Chapter 4

Multiplicative Structures

Now that we have a good grasp of MU, we want to find some of its properties. It occurs
that MU is closely linked to notions of orientation. To study it in details, we will work on
ring spectrum and on complex orientation. After this, we will use all of our previous work to
compute cohomology of MU.

4.1 Ring Spectrum

4.1.1 Ring spectrum and multiplicative cohomology

We have seen in the chapter 2 that spectra and cohomology where equivalent notions (up to
homotopy). We know that we can give some cohomology (like H*(—, R) with R a ring) a
multiplicative structure. Then, a good question is what structures on spectra can be used to
represent this multiplicity. An answer is the notion of ring spectrum, but before this, we need
to define the notion of smash product on Sp.

Definition 4.1.1 (Smash product of spectra).
Let E, F € Ob(Sp). We define the smash product of spectra E A F as

(EAF)y=E,AF,
(EAF)aps1=EnnFya St

Pon = Z'dEn/\Fn/\Sl

E F
DP2n+1 = pn N pn

Smash product of spectra has many good properties.
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Proposition 4.1.2.
Let E, F € Ob(Sp):

1. Subspectra of E A F of the form E A F, with E cofinal in E and F cofinal in F are cofinal
in EAF.

2. E A F is isomorphic to EAF:
EAFy,=E, A F,
E A Fonp1 = Eny1 A Fy
3. Let X € Ob(CW). Then

(EAF)AX=(FEAX)AF=FEnaA(FnX)

4. YmeZ | |
SMEAF) ~Hom Z'E AYF withi+j=m

5. VE € Ob(Sp)
EAS=FE

D

. Smash product is associative but only commutative up to isomorphz’snﬂ.

Proof of Proposition

1. Let E A F be a subspectrum of E A F. Let e € E,, A F,,. Due to the structure of smash
product on CW complexes we get that e = e1 A eo with e; € E,,,e0 € F},. Then, dm
such that

SMe = 5"y A X""e3 € Enym A Frim = (E A F)amim)-

2. Tosee that EAF ~EAF , we consider the following commutative diagram:

id Pk A Dk
——F, AF, E, A F, A St Epi AFppqg—---
id pE Aid id
pE Aid id A pE

—F, AF,

Eny1 A By

Enyi A Fpyr— -

n fact, the question of a good (that would be associative) smash product on spectra is a very rich one. We
here only give and work on a naive definition but further work on the topic has been done and can be found in
[AA74], part IV and in [Swil7], chapter 13.
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This imply that we can define the spectral function
p:EAF — EAF

Pon = id, Pani1 = pE A idp,
This induce that E A FF' >~ E A Eg with

EnFy, =Ey Ay
EAFy, 1=YE,AF,
Then, we see that £ A F is cofinal in E A F. So they are isomorphic.
. By definition.
. Consider i,j € N, i + 5 = m. Then,
YSEAYF ~ton EAFAS' AS  2EAFAS™ ~tom X"(E A F)

Now, fix i < 0, j = 0 we have
STHEEAYF) ~gom S'EAYFAS™ ~tom EAYIF ~pom % (E A F)
Using the fact that X is a natural bijection on HoSp, we get that
SUEAYIFE ~pom S (E A F)
If both ¢ and j are negative, we have
STTISIEAYFE) ~Hom STEAYIEASTAS ~gom EAF
Thus, similarly to before, X'F A ©/F =~ X (E A F).

. Consider the following diagram

id pEY Aid
o F, A S" EnAS”+1 En+1/\sn+1‘>...
Pn Pan © XPn Pn+1
Pon Pon+12
E2n " E2n+1 i 2n+1) —= "

with p,, = pap—10 Ep2(n71) OO En_lpn

This gives us an isomorphism between E A S and ¥'FE with
X'E)pi1 =Y'E,,n =0

This is a cofinal subspectrum of E. Hence, we have that £ A S ~ F.

2Cellular maps are by definition open and thus have, when bijective, continuous inverses
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6. Commutativity is by definition. Associativity is can be seen by

(EAF)AG=Z(EAF)A(GAS)=(FAG)A(EAS)=EA(FAQG)

LET2

Example 4.1.3.

o Let U be as in[2.1.9, Then, U A E is of the form

e}
(U A E)an = \/ Z'E,
=0

(U A E)opgr = \/ZE

e From previous example, we get

0 i+1
(U AU)on \/\/SZ
=0 j=
(U AU)opt1 = \/\/SZ
=0 j=

With our smash product for spectra, we muss also define smash product for spectral maps.

Definition 4.1.4 (Smash product of spectral maps).
Let E,F,H, K € Ob(Sp), f = [E, fle Sp(E,H),g = [F,g] € Sp(F,K). We define the smash
product of f and g:

frg:EAF—>HAK

[E A F,h]
h given as follows.
_ Lo PR ADE
—FE, AF, E, AF, ASt FEpii AFpyg— -
Jn A Ggn Jn A gn A idgt fntl A Gn+1
¢ P A o
—H, A K, H, n K, ANSV—"Hy1 A Kppp — -+
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Unsurprisingly, map create using the smash product behave well under homotopy.

Proposition 4.1.5. Let f,g€ Sp(E,H), h,ke Sp(F,K). If f ~gom 9, h ~Hom k. Then

f/\h"'Homg/\k

In particular, if [f] =0, then [f A h] =0

Proof of Proposition
Let W : E A I'™ — H be the homotopy between f and g. Then,

WAh:EAITAF>HAK

Gives us the homotopy between f A h and g A h.
Now, because 0 = [#] the base point map, we get that = A h = % by definition of smash product.
L]

Using this, we can, like for [2.1.47] extend the notion of homotopy to Sp.

Definition 4.1.6 (Homology of spectra).
Let E, R € Ob(Sp). We define the E-homology of the spectrum R as

Ew(R) = [Z*S,R A E] = my(R A E) = colimy, Thion(En A Ry)

Note that it can be shown that smash product on spectra preserve cofibre sequence as defined in
ZdE NG

. Thus, if G b, HY%S Kisa cofibre sequence, then so does E A G En EAnH —
E A K and, using[2.1.74),

(idE/\f)*

E(G) By (H) 2005, By ()
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Now that we have a spectral smash product, we can give a proper definition of ring spectra.

Definition 4.1.7 (Ring spectrum).
Let E€ Ob(Sp), m: EAE — E andn:S — E such that:

1. The following diagram commute up to homotopy:

idg A m
EAEAE EAFE
m A idg m
m
EAE E

2. The following diagram commute up to homotopy:

nAtdg idg A
SAFE EFEAE EAS
\ ”/
E

We name (E,m,n) a Ting spectrumﬁ
Furthermore, if m ~pgom m o T with T the map that switch element, then we say that (E, m,n)
1s & commutative ring spectrum.

Example 4.1.8.
1. Let E=S, m:S AS — S be induced by m;; : St A ST~ S and n = ids. Then,

(S,m,n) is a commutative ring spectrum.

2. Consider the following maps
. C C C
Mij t Gigy X Gk, = Gitjhaths

1y

3We see that those diagram are the same that for ring in Ab.
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Thoses maps induced the following structure on the tautological bundle
M i (Vi krtk) = Viks X Vika
This extend to the universal bundle
mi;(Yits) = Y X
Thus, we get T'(m; ;) : MU (i) A MU(j) — MU(i + j)

Furthermore, we have that m; ; is stable with the suspensions maps of MU. It therefore
extend to a spectral map
m: MU A MU —- MU

For n, because BU(0) = %, MU(0) = S°, consider
n:S— MU
n =[S, X%ids,]

(MU, m,n) is a commutative ring spectrum.

Now that we know ring spectrum, let’s define multiplicative cohomology and see the link between
thoses two notions.

Definition 4.1.9 (Multiplicative cohomology).
Let {E*,0*} be a reduced cohomology. We say that it is a multiplication cohomology if there
exists a natural transformation for all i,j € Z

pii(X,Y): E(X)®E/(Y) - E"H(X A Y)

1e EY(SY)
satisfying the following axioms:
1. pij(o™ @id) = o™ o iy
. . Hit1,5 .
EF(ZX)® EI(Y) EFTHEX AY)
O.’H-l ® id 0.i+j+1
) . i, 5 S
E(X)® E'(Y) E (X AY)
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2. pij(id @ oIty = o™it oy 51q

. . Hi,j+1 L
E{(X)® EI+{(SY) EFI+1(X A YY)
id®0j+1 oititl
: . Hi,j L
E{(X)® EI(Y) EFI(X AY)

8. po(p®id) = po(id@p)
4. p(1®z) = p(z®1) = z,Yr e E™(X)

Furthermore, if v is commutative, we say that H*(—) is a commutative cohomology.

Definition 4.1.10 (Cohomology ring).
Let {E*} be a multiplicative cohomology. Consider

E*(X) = D E'(X)

€L
Equipped with cup product induced by multiplicative structure and diagonal map:
o B{(X) ® BV (X) X9, piti(x A X) A5 Biti(X)

We get that (H®*(X), +,*,—, 1) is a graded ring. We name E*(X) the cohomology ring of X.

Theorem 4.1.11.
Let (E,m,n) be a ring spectrum. This induce on the cohomology E*(—) a multiplicative structure.

Proof of Theorem [4.1.11
We construct our multiplication using the fact that E™(X) = [E®X,X"FE], we consider
fe Fi(X), ge Bi(Y).

i (X,Y) : [S°X, SE]® [S*Y, Y E] - [S9(X A Y), S E]
i (X, Y)(f, 9) = " m(f A g).

Using Xm : SUE A Y E ~gom S (E A E) —» XHHE.
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We also define 1 = [n] € E°(S°) =[S, E].
To understand why p satisfy the first two point, we see using [2.1.45, that o*(f) = X~ f. Then

pijo (e @id)(f®g) = EHm(EZTf Ag)
Z”Jm(Z_l(f A g))
El—l.zi-‘rj-i-lm(f A g)
oIt o i i (f®g)

This goes similarly in the other case.
Now, the following diagram commute up to homotopy

idzz‘E A\ EJJrkm

YEAYE AYFE YE AYITEE
YiHIm A idse g Yitithm,
Zi-‘rj-‘rkm
ZH_jE A EkE Ei+j+kE
Therefore, o
p(p®idseg)(f,9.h) = pw(SHm(f A g),h)

SHTEm (S m(f A g) A h)
~ Hom Ei+j+km(f A SITEm(g A h))
= u(f A Fm(g A b))
= p(idgip®@u)(fig,h)

Giving us our first equality. The second equality comes from
p(1®z) =mn A idsip)(z) =z =m(idsip A n)(z) = p(z@1)

Furthermore, we see that if F/ is a commutative ring spectrum, we get that u is commutative.

ETTT

Let’s now try to prove that multiplicative cohomology — ring spectrum. Sadly, it isn’t as easy
and we can only show here this weaker result.

Theorem 4.1.12.
Let (E*(=), 1, 1) be a multiplicative cohomology. Furthermore, let

1 1 1
lim E"Y(E,) = lim E*™YE, A E,) = lim E*"" 1 (Eon A (En A Ep)) =0
n n

n

with Um' |as defined here,
Then, we can give the spectrum E a ring spectrum structure.

119



Proof of Theorem
wlog, we may assume that E € Ob(2Sp) with trivial injections. Using

We define n = [£*1]. For m: E A E — E, we use

M2an = Mnn ([ZdEn] [ZdEn])

M2nt1 = XMay

We have to see if those maps agree with each others.
o" is given by the following diagram:

(X, En] b2 [EX,SE,]
Un+1
(p;z-l,-k)* (pn+k)*
A
[X, QF, 1] [2X, Bpii]

and we have this other diagram

Hn4+1,n+1

[En+17 En+1] ® [En-‘rla En-‘rl] [En+1 A Eni, E2(”+1)]

R LF v
Hn+1mn+1 9
[EEna En+1] ® [EEna En+1] [E (En A En)a E2(n+1)]
oh Tl ® ohtl o2+l o 0_2(n+1)
Hnn
[En7 En] ® [Ena En] [En A By, E2n]

This gives us, seeing [Ma(mr1)|SE, A2E] = [Hnt1,n41(ZidE, ® Yidg, )] that

2
M2t 1) | SEn ASE, ~Hom % Man

Thus, similarly to what we did in the proof of [2.2.18) and in [2.2.17] we can transform {m,} into
a spectral map.
m:EAnE—FE

Furthermore, using [2.2.17, we have that m is unique up to homotopy. E|
Now, we have to show that (E,m,n) is a ring spectrum. This comes from the fact that

4Meaning that if g : E A E — E with g, ~Hom My for n € N, then g ~gom m.
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(m(idE A m)) ~Hom M2n2n (idEzn ® nn(idE, ® Z'dEn>>

4n
~Hom M2n,2n (Nn,n(idEn ® ZdEn) ® idE2n>
~Hom (m(m A ZdE))4n
And thus, using (m(sz A m))4 = (m(sz A m))4 with 0 < i < 3, we get that Vne Z
n+1 n

(m(idE A m))n ~Hom (m(m A ldE))

n

Now, using cofinality, we can forget everything bellow 0 in E A E A E and use Because
limy,, B~ (B, A (B, A Ey)) =0, we get that

m(idg A m) ~gom m(m A idg)

Similarly,
m(ZdE A 77)2n ~Hom ,U/n,n(idEn ® 1)
~Hom ZdEzn
~Hom m(n A idE)Qn

Thus,Vn € Z,m(idg A N)n ~Hom R, ~Hom m(idg A )y

Therefore, because lim} E2*~1(E, A S") = lim} E"~1(E,) = 0, using [2.2.17, we get that
m(n A idg) ~Hom idp ~Hom m(idg A n).

Similarly, if g is commutative, then (m o T),, ~gom m and by using moT ~Hom M,
meaning that F is a commutative.

(JEITI

From this proof, it appears that Brown’s representation on multiplicative cohomology is far
harder than what it appear at first glance and is in fact a very deep question. Further work on
this subject can be fund in [AAT4].
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4.1.2 Thom isomorphism and orientation on ring spectrum

Now that we have a good grasp of ring spectrum and thus of multiplicative structure, we will
study a very important property of MU spectrum, the complex orientation [£.1.23] a property
that simplifies computation of cohomology via what is called Thom-Dolt isomorphism
and gives further structure to spectra.

Definition 4.1.13 (Thom class).

Let € be a complex n dimensional vector bundle on X € Ob(CW) and E be a ring spectrum.
For every b e X, the inclusion map vy : b — X induce a map

T(w) : 8% = T(eg(b)) — T(€).

We name a Thom class an element u € E*"(T(€)) such that Vb e X, T(1)*(u) is a generator
of E?"(S?"). That is to say
T(tz)*(u) = €dy

with € € E°(S°) is unit, seeing (E°(S°), u,1) as a ring.
6n = (1) € E"(S™) using o : E9(S%) = E"(S™).

If such a Thom class exists, we say that £ is E-orientable. E

A good question is how orientable vector behave with standard tools of vectors bundles.

Proposition 4.1.14.

o Let EE be a ring module and & be a E-orientable n dimensional vector bundle on Y €
Ob(CW) with Thom class u. Let f € CW(X,Y). Then, f*(§) is E-orientable.

o Let E be a ring module, & be a E-orientable ny dimensional vector bundle on X with
Thom class u1 and & be a E-orientable ny dimensional vector bundle on Y with Thom
class ug. Then, & X & is also E-orientable.

SWe name it orientable because this can in a way be seen as an extension of how we define orientation on
manifold using tangent bundle [Grel§| 22.1.
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Proof of Proposition
e Using the Thomification T'(f) : T'(f*(£)) — T(€). This gives us a map

E2(T(¢)) LY, pon (T(f*(9)))

Consider T'(f)*(u). We will show that it is a Thom class. To do so, we need the following
commutative diagram:

S&izégl (s
7(6)

Thus, ¥be X
T(p)* o T(f)*(w) = (T(f o))" (u) = T(tp)*(u) = €dp.
e Using the fact that T'(§; x &) = T(&1) A T(&2), we can consider the multiplication

i BT (€) @ B (T(&)) — BT (&) A T(E))

Consider u = pu(uy,uz). Let’s show this is a Thom class. We see that Va € X x Y,
a = (b,b"). We thus have the following diagram.

s2tmeen) ——Llal g« g

G2n1 A G2n2 T'(p) AT (uy) T(&1) A T(&)

Therefore,

T(te)*u = (T(Lb),T(Lb/))*,u(ul,u2)
(T (wp)*ur, T () *uz)
:U’(€15H1 ’ 625712)
€0ny4ny

OETIA

123



Now, let’s show a very powerful theorem. It can be seen as a generalisation of the suspension
rule for cohomology.

Theorem 4.1.15 (Thom-Dold isomorphism).

Let E be a ring module and & be a E-orientable n dimensional vector bundle on X € Ob(CW)
with Thom class w. Then, using the following equivalences and functions

o D(&) ~Hom X

o T(§) = D(£)/S(&) ~rom D(€) v C(S(€))
e At XUCA—-> XA (XuUCA)

we construct Yk € Z the morphism:

U BR(XY) = B (D(6)Y) 25 BM2 (D)t A T(E)) 25 BFN(T(E))

We name ¥ the Thom-Dolt isomorphism and as its name induce, it is an isomorphism
U EF(X) = BT (e)

[a] = [a —u]

Proof of Theorem
1. First, suppose that £ = €%(X). Then, T(§) = X A S2" and ¥ is given by
U EF(X) — EFF2(XT A S2
(F) = ulf, T )

But this is given by the following diagram:

1
Ek(X+) Ek+2n(X+ A Sﬂ%n)
:u(_v 1) ,U,(—,E)
idxy+ AN O
Ek:(X-i- A Sﬂ%) %Ek—ﬂn(}(ﬁ- A Sﬂ%n)

Thus, ¥ is an isomorphism.

51t is usually found in literature using unreduced cohomology on left and reduced cohomology in the right.
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2. Now, let A, B be open subsets of X, {4 = 1%(£),&B = t5(£), 6~ = i~ 5(6), &0 = i 5(9).
They all have Thom space and class. We now suppose that the Thom isomorphism works
for £4,¢&p and €. Using the following cofibre sequence

(ida,idB)
—_

(AnB)" % AT v B (AuB)*t

we get, using the Mayer-Vietoris long exact sequence for cohomology:
EF((AnB)") « EF(AM@E*(BY) « E*((AuB)") « E*¥'((AnB)") « B (AT)@E1(BY)
It works similarly for Thom space, that form a cofibre sequence

T(&~) = T(€a) v T(EB) = T(S0)

Thus, we have the following commutative diagram:

EF((An B)T) EF(AT)® E*(BY) EF((A U B)T)
V] e N

ERUT(E)) <—— EF(T(8a)) @ EM2M(T(§p)) =—— EM2M(T(80))

"eEk((AUB)+)

EF1((An B)T)

Ekfl(AJr) @ Ekfl(BJr)
v v VASRY

= EFP(T(EL))

Ek_1+2n(T(§m)) - Ek_1+2n(T(§A)) @Ek_1+2n(T(§B))

Using 5-Lemma, we get that

U : EF(A U B) ~ EF2(T(¢))

3. Lets now use the previous 2 points with the trivial covering {U,} of X. If there are only
finitely many such open, our proof is done. Issues occurs if they are infinitely many. To
solve this problem, because X is a paracompact, we can assume that {U,} is countable.
Then consider the open V,, = U’ U, with &y, = p~1(V,,). Using the previous 2 points,
{V,,} follows the Thom-Dolt isomorphism.

Because | J,,.y Vo = X, using [1.4.21] we get the following commutative diagram:
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0 lim}, E*(V;,) E*(X) lim, E* (V) 0
lim! ¥ U colimW¥
0 — lim,, B*"2"(T(¢y,,)) E¥(T(¢)) limp, E¥+2"(T(&y,,)) —0

Thus, using 5-Lemma once again, we get our desired result

U EF(XT) >~ EF2(T(€)).

(JELIS

Corollary 4.1.16.

Let X € Ob(CW), E be a ring spectrum and let £ be a E-orientable n complex vector bundle on
X. Then
Ek+2n(Eg) ~ Ek(X-i-)

with Eg the one point compactification on the total space of &.

Proof of Corollary(4.1.16f Using Thom-Dolt isomorphism [4.1.15| and [3.1.26} O

Now, the good question to ask ourselves is when do we have Thom class 7 We can give a
beginning of answer using the following proposition.

Proposition 4.1.17.
Let E be a ring spectrum. If v, is E-orientable, then any n complex vector bundle is E-orientable.

Proof of Proposition
Using the fact that -, is the universal bundle [3.1.34] any n complex bundle £ on X is given by

& = f*(yn). Using4.1.14] we get that & is E-oriented.
OJELIT
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Thus, the question of whether or not bundles are oriented is not as much a question about
bundle but is a question about E itself. To continue, we will need to define the notion of
complex orientation on ring spectrum.

Definition 4.1.18 (Complex oriented ring spectrum).
Let E be a ring spectrum. We say that it is complex oriented if:

1. Every & complex vector bundle has a Thom class ug.
2. ugpxey = T(f)*u, given by|4.1.14}

3. ug xgy = p(ug,,ug,) given by l4.1.14,

We name {u¢} a complex orientation on E.

Using universal bundles, we can reduce theses conditions.

Lemma 4.1.19.
Let E be a ring spectrum. It is complex oriented if and only if v, are E-oriented using
up € E?"(MU(n)) such that Vi,j € N:

p(uis ug) = T(mg5)* (witj)

with T(miJ) :MU@GE) A MU(j5) » MU(i + 7).

Proof of Lemma[4.1.19
e =: By definition.

e <: Because 7, are universal bundles using [3.1.34] any n complex vector bundle is of the
form § = f*(v,). Thus, we can construct using 4.1.14|a Thom class on &, ue = T'(f)*up.

Now, we have to check that the latter points of definition 4.1.18| are preserved.

— upey = T(f)*u: Let &1 = gf (), &2 = g5(m) such that & = f*(£2). Then,
&1 = (920 f)*(yn). Using[3.1.34] we get that g1 ~gom g2 © f. Thus,

Ug = T(gl)*un = T(QQ © f)*un = T(f)*U52.

— Ug xgy = M(Ug,, g, ): Let & = gf(7:) be a bundle on X, & = ¢5(7;) be a bundle on
Y. We have that

F*(Vitj) = & x & = (g1 x g2)* (7 x 75)
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Vi x5 = mij(Yits)-
Thus, we have that

Ug, &, T(f)*(wi+s)
= T(mijog x g2)" (uisj)
= T(g1 % 92) (mz,j)*(ui+j)
= T(g 1 X 92)* (wi, uj)
= (T (g1)*ui, T(g2)*uy)
u(%»%)

[ ELIg

Corollary 4.1.20.
The MU spectrum is complex oriented.

Proof of Corollary [4.1.20)
We take as Thom class for v,

U, € MU (MU (n)) = [E°MU (n), 2" MU]

Up = EOOZdMU(n)

Let’s show that wy, is indeed a Thom class. We remind ourselves that 1 = [n] = [¥®idgo]. Thus,
On = [2%idg2n]. Then, Vbe X

T(1)* (tn) = [S%idarumy © SPT ()] = [S° (idpru () © T(w))] =[BT ()] = [Eidg2n] = 6,

We thus have Thom class.
Now, what is left to show is that p(u;, u;) = T'(m;;)*(uitj). But this comes from the multi-
plicative structure of MU.

p(uisug) = T(mi ) (wi A ug) =T (mi )" (wivg).

[ EI20

"This comes from T'(t5) ~Hom idgz2, because BU(n) is connected. See[4.2.20|to understand why
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Now, let’s add some structure to spectral maps, making them like ring morphisms.

Definition 4.1.21 (Ring spectral maps).
Let (E,mg,ng),(F,mp,nr) be ring spectra. f € Sp(E,F) is a ring spectral map if the
following diagrams commute up to homotopy

mg
EAE E
frf f
mg
FAF F
[ ]
17/7E
o |
F

It is apparent from the definition that being a ring map is conserved by homotopy.

Lemma 4.1.22.
Let E, F be ring spectra, f : E — F be a ring map. Let {u¢} be a complex orientation on E.
Then, using f, we can give F' a complex orientation.

Proof of Lemma [4.1.22}
Given {u¢}, we define the complex orientation on F as

{ve = fu(ue)}
We see that v is Thom class. Indeed, Vb e X:
T(w)*ve = T(ub)* frue
f*T(Lb)*u£
f*ME(E’ 55})

,uF(f*e, f*af)
/~LF(€,7 55)

To see that this form a complex orientation, using [4.1.19] we simply have to show that

pur(vis v) = T(mg )" (vigg)-
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But this is because

pr(vi,vi) = pp(faui, faug)
Jepr(ui, uj)
ST (mj)* (i s)
T(m;)*(fettivy)
T (mij)* (vies)

O ET22

The last lemma induce in fact a very important property on MU. It fully define complex
orientation.

Theorem 4.1.23 (Universal complex orientation theorem).
Let E be a ring spectrum. There exists a bijection between the followings sets

{f € [MU,E]| f a ring map } = {{u§}| {ug¢} complex orientation on E}

In particular, E is complex oriented <= df : MU — E, f a ring spectral map.

Proof of Theorem [4.1.23
We have our first side given by We name the complex orientation given in as
{mu¢}. We get

{[f] € HoSp(MU, E)| f a ring map } — {{u5}| {ug} complex orientation on E}
f = {femug}
To construct our inverse, we need to see MU under another light, namely,
MU = colim, X ™2"S° MU (n)
We thus have, by using [2.1.47] that
[MU, E] = E°(MU) = lim E?*™(MU(n)).

with T'(5) : 2MU(n) < MU (n + 1) inducing

$—2(n+1) 3700,
_ 7

RTRC MU (n) = £2FIRCR2MU (n) L 22RO MU (0 + 1)

Now consider u,. We are in the following situation
Uy, € E>(MU(n)) = [E°MU(n),2*"E] = [E""S* MU (n), E]
Furthermore, we have that by definition [T'(j)*un+1] = [uyn@e] = [S?us]. This mean that

Uns1 © ST2FVSOT(G) ~ pom S2un

130



Thus, all our maps are compatible with each others up to homotopy. Using homotopy extension
for spectra [2.1.36] and by operating similarly to what we did in [2.2.17], we construct

u: MU — FE
w= limyu,, with u), ~gom un
Now, to see that u is a ring map. This comes directly from the fact that
mp(u; A ug) = pe(ui,ug) = T(mi ;)" (i) = wivg o T(mi;)

Thus,
me(u A u) = lim; jmpe(u, u;) = limy juiq; 0 T(m; ;) = womyy.

[nE] = 1p = [uo] = wonmu = [uo 0 X*idgo] = [uo].
We therefore get

fl e HoSp(MU, E)| f aring map < {{u ug } complex orientation on F
3 3

u = limpu), < {ue}.

We now have to see that those maps are mutual inverses: To do so, we see that, using it
is sufficient to work on {u,}.

s (M) = [uo X%id g )] = [un]

Wy, fi (mun) = limg[f o S72"S%idpsp )] = [f © Imp S 2" S%idpp )] = [f 0 idao] = [f].
OEL

Example 4.1.24.
The following spectra are complex oriented:

o MU.
e HR, with R any ring. (See for example |[AAT}]).

o S isn’t complex oriented, otherwise using n, we would have that every ring spectrum is
complex oriented.
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4.2 Computation of cohomology of MU

Our goal in this section is to compute the cohomology of MU in complex oriented cohomology,
a work harder than it appears at first glance. What we know is that

Yk, Yo, = {*} = T(yox) = S using [3.1.26]
Thus, MU (0) = colim,T(yox) = S°

EY(MU(0)) = 7_i(E).

4.2.1 Computation of CP*

Proposition 4.2.1.
Let 1 1, be the tautological line bundle on CP*. Then :

T(yx) = CPH

Proof of Proposition [£.2.1}

To prove this isomorphism, consider [ej 2] € CP*+!

. We construct the following map:

¢y, — CPF N\ (e 0}

p([z],v) = [a+ <v,2> exia]

This map is a well defined. Indeed, if z = dy, then
o([x],v) = [by+ < v, 0y > epqa] = [0(y+ < v,y > epr2)] = [y+ < v,y > epva] = o([y],v).
© is in fact an homeomorphism with inverse continuous map

et CPP N\ {epra} — vk

e WD) = (), 255 )

with £ = y— < y, ex192 > €pia-
But now, we have using [3.1.26| that

T(yk) = ’yI,k ~ (CP*N\{epp1 )T = CPFHL

The later isomorphism comes from the fact that CP**! is compact Hausdorff. O EZT
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Corollary 4.2.2.

CP! = T(y,) = T(ec(+)) = S§
We can now compute homotopy of CP*.

Lemma 4.2.3.
Let E be a complex oriented ring spectrum. Then:

(CPk (—Dm 92i(E) for E* reduced

(CPk (—Dm 92;(E) for E* unreduced

Proof of Lemma |4.2.3
First, using we have that for

EY(XT) = E'(X)® E"(S°).
Now, let’s show our formula by induction using Thom-Dolt isomorphism [4.1.15
o k=1: ‘ ' '
EY(CPY) = E(S?) = E"2(5°) = m;,_o(E)

o k>1. . .
Ez((CPkJrl) E172<(Cpk)+>

E2((CPY) @ B(")

@£+17TZ 2(j+1)( )('9771'—2(E)

@ 21 mi—2;(E)

e 112 1

lIe

Corollary 4.2.4.
Let H*(—, R) be the standard unreduced cohomology modulo R a ring. Then,

R 1=2n,n<k
0 otherwise

H(CP* R) = {
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Proof of Corollary
This comes from the fact that m;(HR) = R if i = 0 and m;(HR) = 0 otherwise. OEza

Corollary 4.2.5.
Let E be a complex oriented spectrum.

o0}
E'(MU(1)) = E'(CP®,R) = P mi—2j(E) for E* reduced
j=1

Proof of Corollary [£.2.5}
MU(1) = colimT(v1) = colimyCP**! = CP*
Then, we see that {CP"},cy follows the Mittag-Leffler criterion Thus
k [
HY(CP®,R) =~ colimH'(CP*,R) =~ colimj, (P mi_2;(E) = P mi—aj(E).
j=1 j=1
@25

This also gives us a structure on the cohomology ring.

Theorem 4.2.6.
Let E be an oriented cohomology

E*(CP*) = mto(E)[u]/(u + 1)

E*(CP*) =~ 7, (E)[u]
with u € E?(CP*) being the Thom class given by the orientability of E.

If we have already the abelian group structure, proving the ring structure is quite complex, using
notion of Atiyah-Hirzebruch spectral sequence. The proof can be found in [Ped1§]|, 2.0.4.
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4.2.2 Hurewitz fibrations and Chern class.

Now that we have an idea of how complex it is to compute in the general case, we will restrict
ourselves to computing HZ*(MU). To do so, we need to define what are called fibrations.

Definition 4.2.7 (Hurewitz fibrations).

Let E,B € Ob(CW), p e CW(E, B). It is called a Hurewitz fibration ifVf : Z — E,
such that po f ~pgom g using H, 3H : Z x [0,1]7 — E such that Hy=f,poH =H. Le. the
following diagram commute:

Z

id x 0 p

Z A 0,1]F X

We call F = p~Y(z0) the fibre of our Hurewitz fibration.

Example 4.2.8.
Many examples of fibrations can be found in [Swil7], chapter 4.

o Any product B x F 25 B, using H = (H(z,t),ps o f(x)).
e Let EL B. For f: Z — E, consider H: Z A [0,1]t — B an homotopy of po f.

Using {Uy} trivial covering on B, we get an open covering {Vy x I} on Z A [0,1]7. On
any open, we can define by triviality a lift Hy,. Because [0, 1] is compact, for each y € Z,
3V, x [0,1] such that we have a lift H, on it.

To see this point, we have y x [0,1] is cover by finitely many open Vi x I. By setting
Vy = (i Vi, we get Vy, x [0,1]. Furthermore, we can merges our lifts Hy, together to get
Hy.

Now, we have an_open cover with lift well defined that. Thus, we can merge everything
together and get H.

F — E — B is thus a fibration
o Any quotient group given by a topological group.
H—-G5G/H
e Path space fibration using PH = Hom(([0,1],0), X) and using =(f) = f(1)
OX - PX 5 X
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Theorem 4.2.9.
Let F - E 25 B with F = p~(zo) the fibre of our Hurewitz fibration. We have the following
long exact sequence

c = T (F) = mp(E) » mp(B) = mp1(F) — -

Proof of Theorem [£.2.9
This comes from the fact that, similarly to cofibre, we have a long sequence where every triple
is a Hurewitz fibration ([Swil7] 4.42, [Hat02] page 409),

> QF -QF -QB—->F—>F—>B
Now, consider ' — E — B a Hurewitz fibration. Let’s show that
T (F) = m(E) 25 mi(B)
is exact:
o Im(tsx) € ker(ps): By definition, (poto f) = xg.

o Im(1s) 2 ker(py): Let f: S¥ — E such that [po f] = 0 using H. Then, by fibration, we
get H: S¥ A[0,1]F, poH = H. Let H, = f. We get that f ~gom f, po f = #. Therefore,
f(S*) € F. We have

f:8">F

with ¢ o f ~om [, proving our point.
[1E29

Now, let’s assume the following technical theorem.

Theorem 4.2.10 (Thom-Gysin sequence).
Let S — E — B be an Hurewitz fibration over a simply connected CW complexﬂ R be a
commutative ring. Then, 3c € H"'(E, R) such that we get the following long exact sequence:

(=)

...H*B,R) X H*E,R) — H*"(B,R) <=L g*(B,R) — ...

Proof given in [Swil7], 15.30.

8This means m;(B) = 0 for i < n.
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Now that we have those definitions, let’s compute H*(BU(n)). To do so, let’s first define the
unitary group.

Definition 4.2.11 (Unitary group).
We define the unitary group U(n) € GL,(C):

U(n) = {M € GLn(C)| MM* = idn}

with M™ being the Hermitian transpose.

Proposition 4.2.12.
GS,=U(n+ k:)/(U(n) < U(k))

We thus get two Hurewitz fibrations,
U(n) - U(n+ k)/U(k) > G5

U(k) » U(n+ k) = U(n+ k) /U (k) = Vp(C*HF)
We name V,,(C"**) the Stiefel manifold.

Proof of Proposition |4.2.12

To see this isomorphism, we have that any k vector space in C"** is given by a orthonormal
basis, i.e. an element of U(n + k). But the vector space is unchanged by any modification of its
basis or its complementary space, i.e. a linear action on U(n) x U(k). Thus,

Gl = U +k)/(Um) x Uk))

The fact that we have Hurewitz fibration is a consequence of
@212

Now, using our fibrations, let’s find some useful results on unitary group.
Proposition 4.2.13.
Let NeN. Y¥n < N, i:U(n) — U(N) induce an isomorphism

b 1y (U () = w3 (V)

for j < 2n.
Furthermore, iy : Ton (U(n)) —» o, (U(N))
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Proof of Proposition |4.2.13
wlog, we consider N = n + 1. Then, we have the following Hurewitz fibration

Un) —>Um+1) - Un+1)/U(n) = Sg = sz
Thus, using [£.2.9) we get that the l.e.s.
¥

o ma (ST = (U () —— (U (n + 1)) = m(S2H) — -

For j < 2n, mj(U(n)) = m;(U(n + 1)) and 72, (U(n)) — 72, (U(n + 1))
CJE2T13]

Those results have consequences on the Stiefel manifold.

Proposition 4.2.14.

Wi(Vn(Cn+k)) =0
for i < 2k.

Proof of Proposition |[4.2.14

Using the following Hurewitz fibration
U(k) = U(n + k) — Vo (C™HF)
we get using the following long exact sequence
o T (U)o i (U4 K)) = s (Va (€)= (U (R)) 2 (U + ) = -
Thus, for j < 2k, using [4.2.13] we get that
7 (Va (€)= 0.

L E2T14
Corollary 4.2.15.

m(GS,) = mia(U(n))
fori < 2k.
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Proof of Corollary[4.2.15
Using the Hurewitz fibration U (n) — V,,(C"™*) — G, and we get the long exact sequence

- m(Va(C™) = (G ig) = m-1(U(n) — mjma (Va(C"FF)) — -
Because 7;(V,,(C"*%)) = 0, i < 2k we get Wi(GS,k) ~ 1, 1(U(n)). O E2TH

Corollary 4.2.16.
Let EU(n) = colimy,V,,(C"*F).
EU(n) is contractible.

Proof of Corollary[4.2.16
This comes from the fact that m;( colimyXy) = colimgm;(X%) by [L.4.19] Thus Vi € N, because

7 (Vo (C"F)) = 0 for i < 2k, we get tat m;(EU(n)) = 0. Thus,
Ly : (%) = m;(EU(n))

Thus, ¢ is a weak homotopy equivalence and using Whitehead theorem [1.4.17] it is in fact an
homotopy equivalence.
]

Now, let’s show an interesting result that put greater light on why BU is called BU.

Proposition 4.2.17.
Let F — E — B be an Hurewitz fibration with E contractible set. Then, there exists a weak
homotopy equivalence I — QB.

Proof of Proposition [4.2.17]
To do so, we consider PB, the set of all paths v in B from any x to xp the base point. By

definition, PB is contractible.
Because E is contractible, consider H; the homotopy between idp and *. We use it to define a
morphism

q: E — PB

q(z) = p(Hi(z))
By restriction, because F = p~!(xg), we get that ¢q|r : F — QB. We have that by that
QB — PB — B is a Hurewitz fibration. Thus, we have the following diagram:

ja E p B
qlr q
OB PB B
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Using twice, we get the following commutative diagram:

Tj+1(E) Tj+1(B) ;i (F) ;i(E) m;i(B)
qx 1dy (q|F)« qx idy
Tj+1(PE) mj+1(B) 7;(Q2B) mi(PE) 7;(B)

The equality 7;(F) = 7;(PE) being because they are both 0. Using Five lemma, we get that
q|F is a weak homotopy equivalence. OEz21a

Corollary 4.2.18.

QBU(n) ~gom U(n).

Proof of Corollary[4.2.18

Going to colimit, we get the following Hurewitz fibration
U(n) — EU(n) — BU(n)

Thus, using [4.2.17] we get a weak homotopy equivalence that is just an homotopy equivalence
using Whitehead thorem OEzZI”

Now, let’s sow this important technical lemma.

Lemma 4.2.19.
There exists the following Hurewitz fibration on BU(n):

Szntl — BU(n) — BU(n + 1).

Proof of Lemma [4.2.19
To prove this lemma, Let BU(n) = EU(n + 1)/U(n). We have the following diagram:

U(n) EU(n) BU(n)

EU(n+1) BU(n)
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The two rows are Hurewitz fibrations. Using we get the following commutative diagram:

Tj+1(U(n)) —=mj+1(EU(n)) — m;(BU(n))

m;(U(n))

mi(EU(n))

ids ids

Tj+1(U(n)) = mj11(EU(n + 1)) = m;(BU(n)) mj(U(n)) —=m;(EU(n + 1))

Thus, using Five lemma and |1.4.17, we get that BU(n) ~gom BU(n).
Now, we simply have the following Hurewitz fibration

Un+1)/Un)— EUMn+1)/Un)— EUMn+1)/U(n+1)
S2+1 _, BU(n) — BU(n + 1)

(1E2T9

Having this lemma and Thom-Gysin sequence theorem [4.2.10, we now can compute the structure
of H*(BU(n)) using Chern class.

Theorem 4.2.20 (Chern class theorem).
Let H be the standard unreduced cohomology.

H*(BU(n)) = Z[c{™, -, c{™]
with ¢; e H*(BU(n)) beeing Chern class such that:
1. cén) =1
2. cgl) is given by the orientation of H?(CP%), using the fact that MU (1) = BU(1).

3. using i : BU(n) — BU(n + 1), we get i*cg.nH) = an)'

4. using m : BU(n) x BU(m) — BU(n +m), we get c,(Cner) = Ditick cgn) v cg.m).
Proof of Theorem

We will prove this theorem by induction: n = 1 given by

Suppose H*(BU (n)) =~ Z[cgn), e ,c%n)]. Then, let’s consider the n + 1 case. We have by [4.2.19
the following Hurewitz fibration:

Sz"*t — BU(n) — BU(n + 1)
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Using Thom-Gysin sequence we get that the following long exact
-+ — H¥BU(n + 1)) - H*(BU(n)) —» H*?""Y(BU(n + 1)) » H**Y(BU(n + 1)) — -+
Let’s use it to compute some cohomology:
e By nature of H*(—) and because BU(n) is connected, we get that Vn € Nt
H™(BU(k)) =0
HY(BU(k)) =27

To see that BU(n) is connected, we use 4.2.13| and 0 = mo(St) = mo(U(1)) = mo(U(n)).
Then, by using we have

m0(U(n)) = m0(EU(n)) — mo(BU(n)) — 0
Thus, mo(BU(n)) = m(EU(n)) = 0.
Note that, using we get that
m(BU(n)) = mo(U(n)) = 0
e 2k+1<2(n+1):

- — H*(BU(n)) —» H*7*""Y(BU(n+1)) — H**(BU(n+1)) - H**'(BU(n)) — - --

Using the fact that, by induction, H***1=2"=1(BU(n + 1)) = H***(BU(n)) = 0, we get
that
H** Y BUn+1))=0

e 2k + 1> 2(n+ 1): Consider
N H2k—2n—1(BU(n +1)) — H2k+1(BU(n +1)) — H%H(BU(n)) .
By induction, H?**1(BU(n)) = 0. Thus,
H*»= 2L BU(n + 1)) —» H**L(BU(n + 1)).

But then, using another induction, we can guaranty that H**~?"~1(BU(n+1)) = 0. Thus
H*YBUM+1))=0

e 2k: Consider the following exact sequence

- = H>*"Y(BU(n)) » H**"™)(BU(n+1)) - H*(BU(n+1)) — H*(BU(n)) —» H* > (BU(n+1)) — - -
Using H?*=1(BU(n)) = H*~?"=Y(BU(n + 1)) = 0, we get for all k the s.e.s.

0 H%_z(”“)(BU(n +1)) - H*(BU(n +1)) - H*(BU(n)) - 0
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—Ifk<n+1, get
00— H*BUMn+1)) 2> (Z[er, -, en])or — 0

Thus
H* (BU(n+1)) = Zlc1, - ,enl)or = (Zler, -+ s cns1])ok

— If Kk =n + 1: We are in the following representation.
0 — 7, ST, H2("+1)(BU(n +1)) _’*_> (Z[ecy, - - - ’Cn])%n“) -0

Using the fact that Z and (Z[e1,- - ,cn])2r can be seen as free Z modules, we get
that H?*(BU(n + 1)) split and is therefore free. Thus,

H*" D) (BU(n + 1)) = (Z[er, + , enl)apns1) ® Z(cnt1)

H*"(BU(n +1)) = (Z[er, -+ en1])anen)
— If k> n+ 1. We get that

Cnil—— i*
0— (Z[er, s ) 2b—2(nt1) —— H*(BU(n + 1)) = (Z[e1,++ , cn])or — 0

It also split in
H*™BU(n +1)) = (Z[c1, -, cn])ar @ <Cn+1 — (Z]cy, - - 7Cn+1])2k—2(n+1)>
H*(BU(n +1)) = (Z[c1, -, cn1])2n
Thus, we get our desired result
H*(BU(n)) = Z[ci, - ,cn)

[ EZ20

Example 4.2.21 (Tabular of unreduced cohomology of BU).

HO H2 H4 H6 H8 HlO H12 H14 H16 H18 H20 H22 H24 H26 H28
BUWO)| Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BUl)|zZ zZ Z Z Z Z Z Z Z Z Z Z Z Z Z
BUQ2) | Z 7 z7* 7* 72 7* Z7* 7* 7% 7> 78 7% Z' 77 78
BU(3) 7, 7, Z2 Z3 Z4 ZS Z7 ZS ZlO Zl2 Zl4 Zlﬁ ZIQ Z21 ZQ4
BU(4) 7, 7 Z2 Z3 Z5 ZG ZQ le Z15 ZlS Z23 Z27 Z34 Z39 Z47
BU(5) 7 7 72 73 7o Z7 710 713 718 723 730 Z37 7A7 Z57 7,70
BU(6) 7 7 Z2 ZS Z5 Z7 le Zl4 Z20 ZQG Z35 Z44 Z58 Z71 Z90
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This tabular is given by the following recursive formula H?*(BU(n)) = Z*) with
an(k —n) + an—1(k)

an(k) =3 dok,n =0
0,k<0

Corollary 4.2.22.
Let HZ be the standard reduced cohomology. Then

HZF(MU(n)) = H*>"(BU(n))

Proof of Corollary[4.2.26
Using Thom-Dolt isomorphism [4.1.15
(]

Example 4.2.23 (Tabular of reduced cohomology of MU).

H7Z° H7? H7Z* HZ7ZS HZ7Z® HZ'Y HZ? HZY HZ' HZ'® HZ>
MU0)| Z 0 0 0 0 0 0 0 0 0 0
MU@) | 0 V/ y/ y/ 7 V/ 7 7 7 Z Z
MU@2)| 0 0 z 7* 7* 73 73 zZ4 zZ4 Z> z5
MU@B3)| 0 0 0 z 7: 73 74 A 7z z8 7'
MU@4)| 0 0 0 0 Z 72 VA A A AN/
MU®B)| 0 0 0 0 0 7 7?2 73 75 zi  zY
MU@®6)| 0 0 0 0 0 0 Z 72 Z3 A 7"

We can in fact generalised Chern class on any complex oriented ring spectrum.

Theorem 4.2.24 (Conner-Floyd Chern class).
Let E be a complex oriented ring spectrum. We get that

E*(BU(n)) = ma(B)ct’, - ¢y

with ¢f € E*(BU(n)) the Conner-Floyd Chern class, having similar properties than the
Chern class.
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The proof is using Atiyah-Hirzebuch spectral sequence and is thus too complex for the scope of
this projet, but a proof can be found in [CF0G].

Corollary 4.2.25.
Let E be a complex oriented ring spectrum.

E*¥(MU(n)) =~ EF¥=2"(BU(n)) @ E*~2"(S)

Proof of Corollary
By Thom-Dolt isomorphism [4.1.15
(]

Let’s now compute the cohomology of the MU spectrum using the following definition [2.1.47]

Proposition 4.2.26.
Let E be a complex oriented ring spectrum. We get

E¥(MU) = lim, E¥(BU(n)").

Proof of Proposition

Using the fact that MU_j = %, we get
EF(MU) limy, E*+2" (MU (n))

limg E*(BU (n)* )

lle

1 E224

Proposition 4.2.27.

H2k+1(MU) -0
H?**(MU) = H**(BU(k))

Proof of Proposition 4.2.27]
This comes from the fact that H?"*1(BU(n)) = 0.
Otherwise, we have by induction on ¢ that ay,4(n) = an(n), with ay, (k) given in [4.2.21} Thus,

lim, H?*(BU (n)) = lim, Z*»®) = zo+®) — g2(BU(k)).
O Ez2n

9Using [4.2.25
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Appendix A

To go further in the study of MU

In this section, we will state other interesting results about MU that we don’t have time to
study in details in this paper.
A.1 Computing 7.(MU)

First, let’s have a look at m.(MU). If we won’t prove its full structure, we will give a first
intuition, using complex cobordism that we proved in [3.2.26
To do so, consider the following lemma

Lemma A.1.1.
Let X € Ob(CW) be compact, A be an abelian group. Then

H*(X,A) = 0 except on finitely many cases.

Furthermore, Y, . dim HF(X,Fs) < o0.

Proof of Lemma

Because X is compact, it is a finite cell complex. Using the cofibre sequence on the skeleton
Xk N Xk-i—l N \/?21554_1
we get the l.e.s
e HI (I ) e H(XR, A) o UYL A) o (S50 A) s

Let us show by recursively that Vi > k, H*(X*, R) = 0. Because X° = ij?, the initiation is
true. Then, if we assume Vi > k, H*(X*, R) = 0, we get that

0« H(X* R) « H(X*' R) <0
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for i > k + 1. Therefore, using our recurrence hypothesis, we get that H*(X**1 R) =0, i > k.
Thus, because X compact, X = X*. Thus, H(X,R) = 0 for i > k.

Now, to show that >},  dim H*(X,Fs) < oo, by induction.
H*( XY R) = Hk(\/jS]Q,]Fg) =F} if k = 0, 0 otherwise. Thus, Y., ydim H*(X% Fy) = j < o0
By the long exact sequence, we have

0 — Hk+1(Xk+1,IF2) - ng - Hk(Xk,F2) — Hk(Xk+1’F2> —0

Thus, dim H*T1(X*+1 Fy) < ny, and dim HF(X*+1 Fy) < dim H*(XF,Fs).
Furthermore, H*(X*+1 Fy) =~ H*(X* Fy),i # k,k + 1. Thus

> dim H¥ (X" Fy) = j < o0
keN

AL

We now can define what is called the Euler characteristic.

Definition A.1.2 (Euler characteristic mod 2).
Let X € Ob(CW) be compact. Using previous lemma we define the Euler characteristic
(mod 2) as:

x2(X) = Y (1) dim (H* (X T, F)).
keN

Example A.1.3.
XQ(S]IQJLJFI) =

X2(S§") =
x2(CP*) =k + 1

Euler characteristic has some good properties

Proposition A.1.4.
Let X,Y € Ob(CW) be compacts. Then,

x2(X vY) = x2(X) + xa2(Y)

x2(X AY) = x2(X).xa(Y)
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Proof of Proposition
x2(XvY) = Y,n(—1)dim (H*(X 0 Y,Fs))
= Nen(~1) dim ((HA(X, F2)) x (HE(Y,F)) )
= x2(X) +xa(Y)

1
1

Xe(X AY) = Yyen(—=1)Fdim (H*(X x Y, Fy))
= ZkeN(_l)kdim(Zi+j:kHi(X7F2)®Hj(Y7F2))
= DieN Ziﬂ.:k(—l)i(—l)j dim (H*(X,Fy)).dim (H?(Y,F2))
= x2(X)x2(Y)

DAL

Lemma A.1.5.
Let X,Y,Z € Ob(CW) be compact spaces such that X — Y — Z is a cofibre sequence. Then,
the Euler characteristic is defined and

x2(Y) = x2(X) + x2(2)

Proof of Lemma[A1.5}

Consider the long exact sequence for cohomology induced by the cofibre sequence.

o HMY X Fy) S H*(ZT o) && HR (Y, Fy) S H*(XT,Fy) =Y HY(ZT Fy) — - -

Then, because abelian group are Fo-linear group, we get, using exactness that:
d% = dim H*(Z",Fy) = dim(d;) + dim(ag)
d¥ = dim H*(Y*,Fy) = dim(ay,) + dim(by,)
d% = dim H*(X ™", Fs) = dim(ay,) + dim(dj_1)

Thus, d¥% + d5 — d¥ = dim () + dim(d_1)

Therefore, we get

2(X) +x2(2) = xa(Y) = Spen(—1)*(d +db — df)
Dken(—1)*(dim(d) + dim(dy-1))
0

We get to zero because dim(dp) = 0 and 0, become zero at some point. OMALH

'This is given by Kunneth theorem which can be found in [Swil7], 13.13.
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Corollary A.1.6.
Let X, Y be compact CW complexes.

x2(X UY) =x2(X) + x2(Y) —x2(X nY)

Proof of Corollary[A.1.6}

This is because we have the following cofibre:
(XnY)F > XTvYt - (XuY)"
[1[AT.dl

Now, let us assume the following theorem

Theorem A.1.7 (Poincare duality).
Let M be a compact n manifold without boundary. Yk

Hy(M,Fa) = H" *(M,TFy)
Furthermore, using universal coefficient theorem, we get that

dim H*(M,Fy) = dim H" % (M, F,)

Proof given in [Swil7], 14.13.

This induce the following idea.

Corollary A.1.8.
Let M be a compact odd dimensional manifold without boundary. Then

x2(M) =0

Proof of Corollary[A.1.8

Because M is a compact manifold, we have that H*(M,Fs) # 0=k =0,--- ,n. Now, we have
that

2v2(M) = Y _o(—=1)Fdim (HF(M,Fy)) + D o(—1)F dim (H"*(M,F3))
- ZZZO(—l)k<dim (H*(M,Fy)) — dim (H*(M, FQ)))
0
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mfrwe:

Using this corollary, we can get the following result on complex projective spaces.

Lemma A.1.9.
CP?* is no boundary of a compact manifold

Proof of Lemma

e Suppose CP? = oW with W a compact 2k + 1 manifold with boundary. Then, consider
W#ow W, a compact 2k + 1 manifold without boundary. We get that

0 = xe(Wa#awW)
2X2(M) — XQ((CP2k)
= 2X2(M) —2k+1

Thus, 0 is the sum of an odd and even number, which is a contradiction.

(AL
Corollary A.1.10.
VE € N, mop (MU) # 0
Proof of Corollary[A.1.10}
Using [3.2.26] we have that o, (MU) = Qg (*).
Now, we have [CP?*] € Q,,(*) and [CP?*] # 0 using Thus, Qa,(*) # 0.
OMATIa

In fact, m,(MU) has the following structure

Theorem A.1.11 (Milnor-Novikov theorem).

To(MU) = Z[b1, by, - - -]
with b; € moi(MU), bi = ¥(CP?).

This theorem is proven in [Rav03], Theorem 3.1.5.
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A.2 Nilpotence theorem

Another very important property of the spectrum MU is the nilpotence theorem. It is in fact
central in all further study of spectral homotopy theory.

Definition A.2.1 (Hurewicz map).
Let R € Ob(Sp) and let E be a ring spectrum. Then, we define the Hurewicz map:

h:7mp(R) = Ex(R)

idRAn
—

Trk(R) %Wk(R/\S) Wk(R/\E) =Ek(R)

In fact, this map extend to the homotopy ring.

h:me(R) — E4(R)

Theorem A.2.2 (Nilpotence theorem).
Let R be a ring spectrum. Consider the Hurewicz map

To(R) - MUL(R)

Then, a € me(R) is nilpotent to multiplication <= h(a) =0
Proof in [Rav92], Chapter 9.
Corollary A.2.3 (Nishida).

Va € m,(S),n # 0, « is nilpotent.

Proof of Corollary[A.2.3}
Let z € m,(S). If n < 0, then 7,(S) = colimm,4%(S¥) = 0. So z = 0.
Otherwise, we have that z is torsion. Then, h(z) € MU,(S) is also torsion. But, by using|A.1.11

MU(S) = me(MU) = Z[by, by, -]
but it is a torsion free ring. Thus, h(z) = 0 = z nilpotent.

J[A23]
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