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Introduction

Abstract:
This master thesis is dedicated to the study of the MU spectrum. To do so, it will first define spectra in ho-
motopy theory and proving Brown’s representation theorem. Then, it will study vector bundles, more precisely
universal ones and their consequences on complex bordism. Finally, it will have a look at multiplicative structure
on spectrum and the induced computation.

Quand on sait où l’on va, on va rarement très loin.1

This quote is a rather appropriate depiction of this master thesis. Indeed, despite its relatively
intimidating length (at least compared to similar paper on the topic), this thesis covers some-
what “basic” questions and notions in its field, something apparent from the fact that most
of the important theorems dates back from the 50’s into the late 80’s. But what this master
project lacks in scope, it makes up in details and rigour as it is as complete as possible while in
the framework of this master project.

To do so, this master thesis is decomposed into 4 chapters and a small appendix:

1. In General Reminders, we define properly basic notions that will be used throughout this
paper, from pointed topological space and homotopy to CW complexes and (co)homology.
For every interesting and important theorems, we quote the proofs in some references.
They are fantastic reads to further our understanding on subjects that we have overlooked
in this chapter as it is not the core of our paper.

2. The goal of Spectra is solely to define the central framework of our work, i.e. spectra (in
the algebraic topology meaning of the word spectra). From its simplest definition, we will
construct its category, its homotopy and shed light on many of its underlying structures.
Then, we will investigate its first application by studying Brown’s representation theorem.

3. In Vector Bundles and MU , we take somewhat of a break from spectra to study vector
bundles, complex ones to be exact. Doing this, we define the Thom space and therefore
finally define MU . To understand its importance, we will have a look at the notion

1René Thom
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of universal bundle. Then, we will interest ourselves to a very interesting link between
manifolds and MU using Thom-Pontrjagin construction.

4. Multiplicative Structures is dedicated to the study of multiplicative structures on
cohomology and on spectra. Using those structures, it also studies the notion of orientation
on a ring spectrum. Then, to use all of our previous theoretical constructions, we will
compute cohomology of MU .

5. Finally, in the appendix To go further in the study of MU , we give further interesting
properties of MU that we had not the time to further develop.

We will taking as a given that the reader is familiar with the following mathematical fields:

• Category theory, as defined in [ML13] first chapters.

• General topology, as defined in [Bre13] first chapter.

• Manifolds, as defined in [tD08] chapter 15 and [Kos13] chapter 1-4.

• Algebraic Topology, especially singular (co)homology as in [tD08] chapter 9 and 17.

Have a nice and pleasant reading.
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Chapter 1

General Reminders

Before going into the meat of this paper, we need to remind ourselves of many structures and
results that will be building blocks of all our further work. We especially give here reminders
on homotopy, (co)homology and CW complexes. The laters, being introduced during the 50s,
are now mainstays of algebraic topology. We will explain why when working on them.

1.1 Pointed Spaces

In this paper, we will mainly work on the category of pointed topological space.

Definition 1.1.1 (Pointed Spaces).
We define the category of pointed topological spaces noted Top‚

ObpTop‚q “
!

pX,x0q| X is a topological space and x0 P X
)

Top‚
`

pX, y0q, pY, y0q
˘

“

!

f : X Ñ Y | f continuous and fpx0q “ y0

)

This category is very similar to the one of topological space, Top. In fact, there is an adjunction
between the two category using the following functor.

Definition 1.1.2 (p´q` functor ).

p´q` : Top Ñ Top‚

X` “ pX \ ˚, ˚q

f` “ f \ ˚
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The p´q` functor is left adjoint with the forgetful functor. That is to say

Top‚pX
`, pY, y0qq – ToppX,Y q

From now on, we will drop writing the base point for pointed spaces when it is clear from
context.
Likewise to \ and ˆ in Top or ‘ and b in MpRq (the module category on a ring), we define
on Top‚ two types of product.

Definition 1.1.3 (Smash Product).
Let pX,x0q, pY, y0q P ObpTop‚q, we define the smash product of X and Y

X ^ Y “ X ˆ Y {„

with px, y0q „ px0, yq.
We give X ^ Y the quotient topology. pX ^ Y, rx0, y0sq P ObpTop‚q.

Definition 1.1.4 (Wedge Product).
Let

 

pXα, xα0 q
(

α
P ObpTop‚q, we define the wedge product of tXαuα as

ł

α

Xα “ tx P
ź

α

Xα,xα “ xα0 all but one timeu

We give
Ž

αX
α the subset topology of

ś

αX
α. p

Ž

αX
α, pxα0 qαq P ObpTop‚q

Notation 1.1.5.
We see that the equivalence class of rx0, y0s P X^Y is just X_Y . We thus can write the smash
product as the quotient set

X ^ Y “ X ˆ Y {X _ Y

Proposition 1.1.6.
Let X,Y, Z P ObpTop‚q be locally compact Hausdorff spaces, then smash product is associative

X ^ pY ^ Zq – pX ^ Y q ^ Z

p
ł

α

Xαq ^ Y “
ł

α

pXα ^ Y q
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Furthermore, we see that ^ and _ are extension of \ and ˆ in Top‚, meaning

X` ^ Y ` – pX ˆ Y q`

X` _ Y ` – pX \ Y q`

Now, we consider cones and suspension. Those are a central notion in homotopy theory.

Definition 1.1.7 (Cones).
Let pX,x0q P ObpTop‚q, I “

`

r0, 1s, 0
˘

we define the cone of X

CX “ X ^ I

Now, let f P Top‚

´

pX,x0q, pY, y0q

¯

, we define the mapping cone of f

Y Yf CX “ pCX \ Y {„, t˚uq

with px, 1q „ fpxq

Notation 1.1.8.
If f “ ι the standard inclusion from A into X with same base point, we write X Yf CA as
X Y CA

Definition 1.1.9 (Cofibre sequence).
We name any sequence

X
f
ÝÑ Y

ι
ÝÑ Y Yf CX

a cofibre sequence.
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Definition 1.1.10 (Suspension).
Let pX,x0q, pY, y0q P ObpTop‚q, f P Top‚pX,Y q. We define the suspension space of X as

ΣX “ X ˆ I`{„

with px0, aq „ px0, bq, px, 0q „ py, 0q and px, 1q „ py, 1q with base point given by rx0, as.
This in fact gives us the suspension functor

Σ : Top‚ Ñ Top‚

ΣpX,x0q “ ΣX

Σfpx, tq “ pfpxq, tq

Proposition 1.1.11.

ΣX – CX YX CX

ΣSn – Sn`1

ΣX – X ^ S1

ΣnX – X ^ Sn

1.2 Homotopy

Now that we have define Top‚, we have all tools needed to define homotopy on Top‚. Thanks
to suspension Σ and smash product ´^´, it has more properties than the usual homotopy on
Top, making it more interesting to study.

Definition 1.2.1 (Homotopy).
Let f, g P Top‚

`

X,Y
˘

. We say that f is homotopic to g pf „Hom gq if and only if

DH P Top‚pX ^ I
`, Y q such that Hpx, 0q “ f,Hpx, 1q “ g
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Definition 1.2.2 (Homotopy equivalence).
Let X,Y P ObpTop‚q. We say that X is homotopically equivalent to Y if Df P

Top‚pX,Y q, g P Top‚pY,Xq such that

g ˝ f „Hom idX , f ˝ g „Hom idY

Proposition 1.2.3.
Homotopy and homotopy equivalence are equivalence relations.

Now that we have a definition of homotopy, we want to give it more structure. A way to do it
is by using H-cogroup.

Definition 1.2.4 (H-cogroup).
We define an H-cogroup as a K P ObpTop‚q equip with co-multiplication µ : K Ñ K _K and
inverse map ν : K Ñ K such that:

• Consider pid, k0q : K _ K Ñ K, pid, k0qpk, k0q “ k, pid, k0qpk0, kq “ k0. We muss have
that the following diagram:

K KK _K

K

OO

µ

oo pid, k0q //pk0, idq
bb

id

<<

id

is commutative up to homotopy.

• The following diagram

K _K _K K _K

K _K Koo
µ

OO

µ

OO

id_ µ

oo
µ_ id

is commutative up to homotopy.
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• The following diagram

K KK _K

K

OO

µ

oo pid, νq //pν, idq
bb

k0

<<

k0

is commutative up to homotopy.

• We say that K is an H-commutative cogroup if µ and µ ˝ T are homotopic. T : K _K –

K _K. T px, yq “ py, xq.

Note that there also exists a notion of cogroup that is the same expect diagram commute
strictly. Similarly, there exists a notion of H-group, where the multiplication is associative up
to homotopy.
Now, we consider the central example of H-cogroup.

Example 1.2.5.
@X P ObpTop‚q, pΣX,µ

1, ν1q form an H-cogroup. with

µ1 : ΣX Ñ ΣX _ ΣX

µ1prx, tsq “

"

prx, 2ts, x0q 0 ď t ď 1
2

px0, rx, 2t´ 1sq 1
2 ď t ď 1

ν 1 : ΣX Ñ ΣX

ν 1prx, tsq “ rx, 1´ ts

Furthermore, if X “ Sk with k ě 1. Then pΣX,µ1, ν1q form a commutative H-cogroup.

Notation 1.2.6.

rX,Y s “ Top‚
`

X,Y
˘

{„Hom

πnpXq “ rS
n, Xs, n P N

Using previous example and the fact that Sn`1 “ ΣSn, we have that πnpXq can be given the
structure of a group (for n ě 1) using multiplication given by the following sequence

ΣSn´1 µ
ÝÝÑ ΣSn´1 _ ΣSn´1 f_g

ÝÝÝÑ X _X
∆
ÝÝÑ X

Now, we have to see that function on Top‚ induce transformation on homotopy sets.
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Definition 1.2.7 (Pullback & pushforward).
Let X,Y, Z P ObpTop‚q, f P Top‚pX,Y q, we define the pushforward of f

f˚ : rZ,Xs Ñ rZ, Y s

f˚
`

rhs
˘

“ rf ˝ hs

and the pullback of f
f˚ : rY,Zs Ñ rX,Zs

f˚
`

rhs
˘

“ rh ˝ f s

See that pf ˝ gq˚ “ f˚ ˝ g˚ and pf ˝ gq˚ “ g˚ ˝ f˚

We now define a central notion in homotopy theory.

Definition 1.2.8 (Weak homotopy equivalences).
Let f P Top‚pX,Y q. We say that f is a weak homotopy equivalence if @n P N

f˚ : πnpXq – πnpY q

X and Y are said to be weakly homotopically equivalent if there exists such a f P

Top‚pX,Y q or in Top‚pY,Xq.

Note that thanks to how we defined our group law, we get that f˚ is a group isomorphism.

Proposition 1.2.9.
Weak homotopy equivalence is not an equivalence relation. But, if f : X Ñ Y is a weak
homotopical map and f „Hom g, then so is g.

The proof of 1.2.9 is analogous to the one for spectra 2.1.21. It is thus omitted.
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We now define the Ω functor.

Definition 1.2.10 (Ω functor).
Let X P ObpTop‚q, we define the following pointed topological set

ΩX “ HomTop‚pS
1, Xq1

Because @Y P ObpTop‚q, HompY,´q is a functor, then so is Ω. @f P Top‚pX,Y q

Ω : Top‚ Ñ Top‚

ΩpXq “ ΩX

f˚ “ Ωf : ΩX Ñ ΩY

Furthermore, using the exponential law ([Swi17], 0.13), we get that

ΩnX “ HompSn, Xq.

. Note that Ω has an equivalent in Top written as LX, but with fewer good properties. (For
example, it isn’t an H-group).
Now, we define the homotopy categories on Top‚ as follows.

Definition 1.2.11 (Homotopy Categories).
We define both naive homotopy category HTop‚ and homotopy category of pointed spaces
HoTop‚

ObpHTop‚q “ ObpTop‚q

HTop‚pX,Y q “ rX,Y s

ObpHoTop‚q “ ObpTop‚q

HoTop‚pX,Y q “ rX,Y srW´1s

where rX,Y srW´1s is the set rX,Y s localised on the class W of all weak equivalences. This
means that we add an abstract inverse f´1 for every weak equivalence map f : Y Ñ X.2

In the category HTop‚, isomorphisms are equivalence maps and in HoTop‚, isomorphisms are
generated by weak equivalences and their abstract inverses.

1also written as Top‚pS
1, Xq

2Further details about Homotopy models can be found in [DS95].
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Remark 1.2.12.
Σ and Ω naturally extend both into functors from HTop‚ to HTop‚ and into functors from
HoTop‚ to HoTop‚

1.3 Homology & Cohomology

We can now define homology and cohomology on Top‚. To be exact, we define generalised
reduced (co)homology. Historically speaking, homology was create as a way to ease the compu-
tation of homotopy, but has then developed itself into a new and vast field.

Definition 1.3.1 (Reduced Homology Theory).
A family tHn : HTop‚ Ñ AbunPZ of functors and natural equivalences tσn : Hn Ñ Hn`1˝ΣunPZ
is called a reduced homology theory H˚ if:

• @pA, x0q Ă pX,x0q, i : A ãÑ X standard inclusion and j : X � X Y CA, then

HnpAq
Hnpiq
ÝÝÝÝÑ HnpXq

Hnpjq
ÝÝÝÝÑ HnpX Y CAq

is exact.

Homology theory can also follows some further properties, named axioms.
Likewise to set theory, in homotopy theory, we want to understand the structure of our homology
theory, knowing that it follows some axioms.

Definition 1.3.2 (Axioms of Reduced Homology Theory).

• Wedge axiom: @tpXα, xαq|α P Au and inclusion iα : Xα ãÑ
Ž

βPAXβ, then @n P Z, we
get

‘αHnpiαq : ‘αHnpXαq – Hnp
ł

βPA

Xβq

• Weak Homotopy Equivalence (WHE) axiom: If f : X Ñ Y is a weak homotopy
equivalence, then @n P Z, we have that

Hnpfq : HnpX,x0q – HnpY, y0q.

13



Remark 1.3.3.
Using mapping cylinder (full details are analogous in 2.1.42), we can assure that every cofibre
sequence (defined in 1.1.9) is homotopically equivalent to another one with simple inclusion.
Thus, for any cofibre sequence,

HnpAq
Hnpfq
ÝÝÝÝÑ HnpXq

Hnpjq
ÝÝÝÝÑ HnpX Yf CAq

is exact.

In this paper, we will mainly work on the dual of homology, named cohomology.

Definition 1.3.4 (Reduced cohomology theory).
A family tHn : HTop‚ Ñ AbunPZ of contravariant functors and natural equivalences tσn :
Hn`1 ˝ Σ Ñ HnunPZ is called a reduced cohomology theory H˚ if:

• @pA, x0q Ă pX,x0q, i : A ãÑ X standard inclusion and j : X � X Y CA, then

HnpAq
Hnpiq
ÐÝÝÝÝ HnpXq

Hnpjq
ÐÝÝÝÝ HnpX Y CAq

is exact.

Likewise to homology, it also as some axioms

Definition 1.3.5 (Axioms of Reduced Cohomology Theory).

• Wedge axiom: @tpXα, xαq|α P Au and inclusion iα : Xα ãÑ
Ž

βPAXβ, then @n P Z, we
get

Hnpiαq : Hnp
ł

βPA

Xβq – ‘αH
npXαq

• Weak Homotopy Equivalence (WHE) axiom: If f : X Ñ Y is a weak homotopy
equivalence, then @n P Z, we have that

Hnpfq : HnpY, y0q – HnpX,x0q.

14



Remark 1.3.6.
We see that if (co)homology H˚pH

˚q satisfy the WHE axiom, then they can be fully defined as
functors (contravariant functors)

H˚ : HoTop‚ Ñ Ab

H˚ : HoTop‚ Ñ Ab

Definition 1.3.7 (Unreduced (co)homology).
In this paper, we will work mainly on reduced (co)homology, but there exists a dual notion on
unpointed topological space, named unreduced (co)homology.
Let H̃˚ be a reduced cohomology, we define the dual unreduced cohomology H˚ as

H˚pXq “ H̃˚pX`q

Let H˚ be an unreduced cohomology, we define the dual reduced cohomology H̃˚ as given by

H̃˚pXq ‘H˚p˚q – H˚pXq

This is because of the cofibre sequence

S0 ÝÑ X` Ñ X

All those definitions gives us many important and interesting results. One of them will be useful
later in this paper 3, so we give it here.

Proposition 1.3.8.
Let H˚ be a reduced cohomology 4 that follow the weak homotopy axiom, then, for any A1, A2 Ă X
with A1 YA2 “ X and x1 P H

˚pA1q, x2 P H
˚pA2q such that

H˚piA1XA2qpx1q “ H˚piA1XA2qpx2q.

Then, Dy P H˚pXq such that H˚piA1qpyq “ x1, H
˚piA2qpyq “ x2.

3More precisely in the construction of a representation of cohomology using Brown theorem 2.2.16.
4A similar result to proposition 1.3.8 also exists for reduced homology
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We also define applications between (co)homology. Because (co)homotopy are functors, theses
are natural transformations with a bit more structure.

Definition 1.3.9 (Natural Transformation of (co)homology).
A natural transformation T˚ : h˚ Ñ k˚ between reduced homology theories ( T ˚ : h˚ Ñ k˚

between reduced cohomology theories) is a collection of natural transformations Tn : hn Ñ kn
(Tn : hn Ñ kn) such that @X P ObpTop‚q, the following diagram commute:

hnpXq hn`1pΣXq

knpXq kn`1pΣXq

hnpXq hn`1pΣXq

knpXq kn`1pΣXq

+3σ

��

Tn`1pΣXq

+3σ1��

TnpXq

ks
σ

��

Tn`1pΣXq

ks
σ1

��

TnpXq

T˚ (T ˚) is a natural equivalence of reduced (co)homology theories if each Tn (Tn) is a
natural equivalence, n P Z.

1.4 CW-Complexes

Now, we have a small problem. It occurs that many interesting properties in homotopy theory
work only on weak homotopy theory. But HoTop‚ is a category not very practical to use.
Thankfully, J. H. C. Whitehead has, during the 50s, define an object that is such a nice and
powerful solution to this problem that it has become the basic ground of all following algebraic
topological. Those are CW-complexes!

In all this part, let X be Hausdorff.

Definition 1.4.1 (Cell-complexes).
A cell-complex K on pX,x0q is a collection of subsets of Xconstruct by induction on the
n-skeleton Kn:

• K´1 “ tx0u

• @n P N, we consider fα : Sn´1 Ñ Kn´1. Then, we define cells of dimention n enα as
subspace of X that are equivalent to Dn glued to Kn´1 along their boundary using fα.

This means that their interior are homeomorphic and fα : Sn´1 � Benα
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To be a cell-complex of X, K must also follows the following properties:

1. X “
Ť

nPN,α e
n
α. ( it is usually noted |K|)

2. 9enα X 9emβ ‰ Ø ñ n “ m,α “ β. (with 9enα “ intpenαq)

A subcomplex K 1 Ă K is a cell-complex such that K 1n Ă Kn. It may not necessary be the
whole space X.
We also define Kpnq “ KnzKn´1.
Finally, we say a cell-complex is finite if it as finitely many cells.

Definition 1.4.2 (CW-complexes).
A CW-complex is a cell complex K on X such that:

• C) K is closure-finite. i.e:

enα X e
m
β “ Ø except on finitely many occasions.

• W) X has the weak topology induced by K. i.e:

S Ď X is closed ðñ @n P N, α P Jn, S X enα is closed in enα

We usually don’t distinguish between X and the complex K.

Proposition 1.4.3 (CW-subcomplexes).
Let X be a CW-complex and Y a cell subcomplex, then Y is also a CW-complex with |Y | closed
in |X|

Remark 1.4.4.
CW complexes have a very interesting property. For any k P N, using skeleton, the sequence

Xk Ñ Xk`1 Ñ
ł

α

Sn`1
α

is a cofibre sequence.
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As per usual, we also need to define maps between CW-complexes.

Definition 1.4.5 (Cellular Maps).
Let X,Y be CW-complexes, f : X Ñ Y a continuous map is said cellular if @n P N fpXnq Ă Y n

Because CW complexes are pointed topological subset, we need to ask ourselves how our previous
construction behave.

Proposition 1.4.6 (Properties of the smash/wedge product on CW-complexes).

• @X,Y CW-complexes, X ^ Y is also a CW-complex with

pX ^ Y qpnq “
ď

i`j“n

Xpiq ^ Y pjq

• The smash product is associative on CW-complex.

• Let f : X Ñ Z, g : Y Ñ V be cellular maps, then f ^ g : X ^ Y Ñ Z ^ V is also cellular.

• @ Xα CW-complexes
Ž

αXα is also a CW-complex with

p
ł

α

Xαq
pnq “

ď

α

Xpnqα

• Let fα : Xα Ñ Yα be cellular maps, then
Ž

α fα :
Ž

αXα Ñ
Ž

α Yα is also cellular.

We see that thanks to this result, homotopy is well defined on CW complexes, seeing it as a
restriction of homotopy on Top‚.
Now, a reasonable question is to consider the difference between continuous functions and cellular
maps between CW-complexes. The following theorem answer our question.

Theorem 1.4.7 (Cellular Approximation Theorem).
Let X,Y be CW-complexes.

@f : X Ñ Y continuous, Dg : X Ñ Y cellular such that f „Hom g

A proof is given in [Hat02], page 349, Theorem 4.8.
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This theorem gives us that we don’t lose any information on homotopy of CW by looking only
at cellular maps. Thus, we define their category.

Definition 1.4.8 (CW category).
We define the category of CW complexes CW

ObpCWq “

!

X| X is a CW-complex
)

CWpX,Y q “
 

f : X Ñ Y cellular maps
(

Proposition 1.4.9.
Σ can also be seen as a functor from CW to CW

ΣX “ X ^ S1

Σf “ f ^ idS1

We now ask ourselves what is the structure of HompX,Y q with X,Y P ObpCWq ?

Theorem 1.4.10 (Milnor’s Theorem).
Let X,Y be CW-complexes. Then, if X is finite, HompX,Y q is homotopically equivalent to a
CW complex.

This was proven in the following article [Mil59].

Corollary 1.4.11.
From theorem 1.4.10, we get that

Ω : CW Ñ CW

is a well defined functor.
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Now, another question we have is how big is CW compared Top‚ ?

Theorem 1.4.12 (CW-Approximation Theorem).

@pX,x0q P Top‚, DY P CW, f : Y Ñ X a weak homotopy equivalence

A proof can be found in [Hat02], page 352.

From the theorem 1.4.12 and proposition 1.4.6 , we get that we can define the homotopy on
CW the same way as for Top‚. We also define rX,Y s and homotopy equivalence similarly to
Top‚.

Definition 1.4.13 (CW-Homotopy Category).
We define the CW-Homotopy Category HoCW:

ObpHoCWq “ ObpCWq

HoCWpX,Y q “ rX,Y s

From this definition, we have that Σ and Ω are still well defined functors on HoCW. Further-
more, we have that HoCW inherit of some properties of HTop‚. Namely

Lemma 1.4.14.
Let X,Y, Z P CW such that Y is finite. Then, there is a natural equivalence

A : rX ^ Y,Zs – rX,HompY,Zqs

Aprfpx, yqsq “ r pfpxqs, pfpxqpyq “ fpx, yq

Proof in [Swi17], 2.5 page 12.

Corollary 1.4.15.
From the previous lemma 1.4.14, we get that

A : rΣX,Y s – rX,ΩY s

i.e. Σ and Ω are respectively left and right adjoint functors in HoCW.
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Lemma 1.4.16 (Homotopy extension property).
Let X,A, Y P ObpCWq such that A Ă X. Let F : X Ñ Y and g : AÑ Y such that F |A „Hom g.
Then, DG : X Ñ Y such that G|A “ g and F „Hom G.

Some proof can be found in [Hat02], page 14.

Now, if we have seen that CW has a lot of very interesting properties, the following theorem is
what makes it a very fundamental category in Homotopy Theory.

Theorem 1.4.17 (Whitehead theorem).
Let X,Y P CW, f P Top‚pX,Y q.

f : X Ñ Y is a weak homotopy equivalence ðñ f is an homotopy equivalence.

[Hat02], page 346, Theorem 4.5, [Swi17], 6.32 page 89.

Corollary 1.4.18.

HoTop‚ – HoCW

By –, we mean that those two categories are equivalents, as described in [ML13], page 18.

This means that we have an equivalent category were all morphism are maps between sets.

Also, we see that we can thus write any reduced Homology and Cohomology that follows the
weak homotopy equivalence axiom as functors and contravariant functors from HoCW Ñ Ab.
This refinement gives us some very powerful properties:

Theorem 1.4.19.
Let tXnunPN be a sequence of CW complexes that inject into one others. Let X “ colimnXn.
Then

tpιnq˚u : colimnπkpXnq – πkpXq

The proof of this theorem can be found in [Swi17], 7.52.
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Theorem 1.4.20.
Let tXnunPN be a sequence of CW complexes that inject into one others, H˚ be a reduced homol-
ogy. Let X “ colimnXn. Then

tH˚pιnqu : colimnH˚pXnq – H˚pXq

The proof of this theorem can be found in [Swi17], 7.53.
Interestingly, this theorem is not as strait-forward when considering colimit and cohomology.

Theorem 1.4.21.
Let tXnunPN be a sequence of CW complexes that inject into one others using jn : Xn ãÑ Xn`1.
Let also H˚ be a reduced cohomology that follows the wedge axiom. Let X “ colimnXn. Then,
we have the following short exact sequence:

0 Ñ
1

limHq´1pXnq Ñ HqpXq
tHqpinqu
ÝÝÝÝÝÝÑ limnH

qpXnq Ñ 0

with lim1Hq´1pXnq “ cokerpδq

δ :
ź

nPN
HqpXnq Ñ

ź

nPN
HqpXnq

δpfpnqq “ p´1qnfpnq ` p´1qn`1j˚npfpn` 1qq

with f P
ś

nPNH
qpXnq.

A proof is given in [Swi17], 7.66.

Corollary 1.4.22 (Mittag-Leffler criterion).
Let tXnu be a sequence of CW complexes that inject into one others using jn : Xn ãÑ Xn`1. Let
also H˚ be a reduced cohomology that follows the wedge axiom. We note jmn : Xn ãÑ Xm, m ą n
the composition jm´1 ˝ ¨ ¨ ¨ ˝ jn.
If for any n P N, DN such that @m ě N ,

pjmn q
˚
`

HqpXmq
˘

“ pjNn q
˚
`

HqpXN q
˘

Then, lim1
nH

qpXnq “ 0.
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Remark 1.4.23.
Using previous definition of lim1, let tXnunPN, tYnunPN, tZnunPN be sequence of CW complexes
that inject into one others and with maps

φn : Xn Ñ Yn

ψn : Zn Ñ Xn

that agrees with each others. If @n P N, we have the s.e.s

0 Ñ HqpYnq
φ˚n
ÝÝÑ HqpXnq

ψ˚n
ÝÝÑ HqpZnq Ñ 0

Then, using snake lemma, we get the exact sequence

0 Ñ limnH
qpYnq Ñ limnH

qpXnq Ñ limnH
qpZnq Ñ

1

lim
n
HqpYnq Ñ

1

lim
n
HqpXnq Ñ

1

lim
n
HqpZnq Ñ 0

Full details in [Swi17], 7.63.

Theorem 1.4.24 (Whitehead cohomology theorem).
Let T ˚ : k˚ Ñ h˚ be a natural transformation of cohomology5 theories satisfying the wedge axiom
on HoCW6 . If T qpS0q : kqpS0q Ñ hqpS0q is an isomorphism for q ă n and an epimorphism
for q “ n, then, @X P ObpCWq

T qpXq : kqpXq Ñ hqpXq

is an isomorphism for q ă n and an epimorphism for q “ n.

A proof is given in [Swi17], 7.67.

5A similar result exist also for natural transformation of homology. See [Swi17] 7.50.
6That is to say, it follows the weak homotopy equivalence axiom.
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Chapter 2

Spectra

Now that we have reminded ourselves about homotopy, homology and CW-complexes, we can
finally work on a definition of spectra. Historically speaking, they were introduced at the start
of the 60s by Elon Lages Lima and refine by George W. Whitehead and J. Michael Boardman.
They were initially defined as a way to give a proper category to computation like 2.1.23, but
have since developed into their own field.

If in the first section, we will give a proper definition of spectra, we will also consider their
immediate properties. Then, we will work during the second section on Brown’s representation
theorem, a result that link cohomology and spectra.

2.1 General Structure

This section will be divided in 4 subparts. In the first, we will build a solid definition of the
spectra category. In the second one, we will show that spectra preserves many results of CW
complexes. The third will be dedicated to group structure and in the final one we will show that
spectra are an handy way to define (co)homology.

2.1.1 Definitions

Definition 2.1.1 (Spectra).
A spectrum E is a collection tEnunPZ of CW complexes with injective singular maps

pn : ΣEn ãÑ En`1.

A subspectrum F Ă E is a subcollection Fn Ă En such that pnpΣFnq Ă Fn`1
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...

En

pnpΣEnq

En`1

pn`1 ˝ ΣpnpΣ
2Enq

pn`1pEn`1q

En`2

pn

pn`1

pn`2

...
...
...
...
...
...
...
...
...
...
...
...
...

´8

Figure 2.1: Representation of a Spectra

Example 2.1.2.

• Let X be a CW-complex. We define Σ8pXq as:

Σ8pXq “

"

t˚u n ă 0
ΣnX n ě 0

• We name this space if X “ S0 as Σ8pS0q “ S

S “
"

t˚u n ă 0
Sn n ě 0

• We define the spectrum U as Un “
Ž8
i“0 S

i with ΣUn “
Ž8
i“1 S

i Ă Un`1. It is interesting
in the fact that it is rather counterintuitive, because it doesn’t grow.

Notation 2.1.3. In order to shorten notations, we will write pn ˝Σ as Σ1 when it is clear from
context.
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Similarly to CW, spectra also have cells.

Definition 2.1.4 (Cells in spectra).
Let E be a spectra and let edn be a d-cell on En, then Σ1edn is a d ` 1-cell of En`1 and so on.
Then, going backward at most d time gives us ed

1

n1 (with n “ n1 ` d ´ d1) with n1 minimal. We
thus define the cells on a spectrum as the following sequence:

e “ ped
1

n1 ,Σ
1ed

1

n1 ,Σ
12ed

1

n1 , ¨ ¨ ¨ q

Definition 2.1.5 (Size of a spectra).
We define the size of a spectrum E as sizepEq “ number of cells of E.
A spectrum E is called finite if it size is finite. It is countable if it size is countable.

Also similarly to CW, spectrum have an analog to skeleton, called layers.

Definition 2.1.6 (Layers).
We define the layers En of a spectrum E by working with cells of E and using the following
notion

lpeq “ mintsizepF q| F is a finite subspectrum of E, e P F u

En “
ď

lpeqďn

e

The following lemma lower somewhat the requirement needed to construct a spectrum. It is a
very handy tool.

Lemma 2.1.7.
Let tEn, pnunPZ be a collection of CW-complexes with cellular maps pn : ΣEn Ñ En`1. Then,
we can construct a spectrum E1 and homotopy equivalences rn : E1n Ñ En such that the following
diagram commute

ΣE1n E1n`1

ΣEn En`1

//ι

��

Σrn

//pn ��

rn`1
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Proof of Lemma 2.1.7:
Let E1n be of the following form:

E1n “ En ^ tnu
` Y

ğ

kăn

Σn´kEk ^ rk, k ` 1s`
{„
, n P Z

with rx, k ` 1s „ rΣn´k´1pkpxq, k ` 1s. 1

First, we see that

ΣE1n “ ΣEn ^ tnu
` Y

ğ

kăn

Σn`1´kEk ^ rk, k ` 1s`
{„
Ă

ğ

kăn`1

Σn`1´kEk ^ rk, k ` 1s`
{„
Ă E1n`1

We define rn : E1n Ñ En as :

rnprx, tsq “ pn´1 ˝ Σpn´2 ˝ ¨ ¨ ¨ ˝ Σn´k´1pn´kpxq with rx, ts P Σn´kEk ^ rk, k ` 1s`

It is well defined: indeed, if t “ k ` 1, by the definition of rn, it is the same. Furthermore, if
t “ n, then, rnprx, tsq “ x.
Furthermore, we define in : En Ñ E1n

inpxq “ rx, ns P En ^ tnu
` Ă E1n

Then, rn ˝ inpxq “ rnprx, nsq “ x so rn ˝ in “ idEn . Now, let’s show in ˝ rn „Hom idE1n
We define H : E1n ^ I

` Ñ E1n

Hprx, ts, sq “

$

&

%

rΣn´mpm´1 ˝ Σn´m`1pm´2 ˝ ¨ ¨ ¨ ˝ Σn´k´1pkpxq, p1´ sqt` sns
with rx, ts P Σn´kEk, k ă n,m ď p1´ sqt` sn ď m` 1, k ď m ă n.

rx, ns for rx, ts P En ^ tnu
`.

It is well defined similarly to rn with H ˝ i0 “ idE1n and H ˝ i1 “ in ˝ rn
Now, let’s show that rn`1|ΣE1n “ pn ˝ Σrn. This comes directly

pn ˝ Σrnprx, tsq “
2pn ˝ Σpn´1 ˝ Σ2pn´2 ˝ ¨ ¨ ¨ ˝ Σn´kpn´kpxq “ rn`1|ΣE1n

Then, by considering tE1n,Ău “ E1, we have our spectra.
l 2.1.7

This lemma is usually used to define a sub-category of spectra (named CW-spectra) where
ΣEn Ď En`1. It can be proven using 2.1.37 that this subcategory is homotopically equivalent to
the category of spectra. To somewhat streamline this paper, we won’t study it in details.
Now, we will construct morphism between spectra. A first way to do it is as follows

Definition 2.1.8 (Functions on spectra).
Let E,F be spectra. A function f : E Ñ F is a collection of cellular maps
tfn : En Ñ FnunPZ such that:

fn`1|Σ1En “ Σ1fn

1with rx, k ` 1s P Σn´kEk ^ rk, k ` 1s` and rΣn´k´1pkpxq, k ` 1s P Σn´k´1Ek`1 ^ rk ` 1, k ` 2s`.
2because Σ is a functor
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Sadly, functions on spectra are too strict of a definition to have all the properties we desire.
Indeed, if we see spectrum as sort of colimit, then we don’t need to know where something is at
every time, but just where it will be at some point.
To get this result, we need work a bit on what are called cofinal subspectra.

Definition 2.1.9 (Cofinal subspectra).
Let E be a spectrum, F Ă E a subspectrum is called cofinal if @en P En, Dm such that
Σ1men P Fn`m.

Lemma 2.1.10.

• Let F,G be two cofinal subspectra of E, then F XG is also a cofinal subspectrum of E.

• Let G be a cofinal subspectrum of F , itself a cofinal subspectrum of E, then G is a cofinal
subspectrum of E.

• Arbitrary unions of subspectra with at least one cofinal are cofinal subspectra.

Proof of Lemma 2.1.10:

• First, we see that if F,G are subspectra, then so does F XG. Indeed

Σ1pF XGqn “ Σ1Fn X Σ1Gn Ď Fn`1 XGn`1 “ pF XGqn`1

Now, F X G is cofinal. Indeed, if Σ1mpenq P Fn`m, then @k P N,Σ1m`kpenq P Fn`m`k.
Thus, @en P En, using m “ maxpm1,m2q with mi given by respective cofinality of F and
G, we get

Σ1men P Fn`m XGn`m “ pF XGqn`m

• First, we see that G is a subspectra of E, indeed

Σ1Gn Ď Fn`1 Ď En`1

Secondly, @en P En, using m “ m1 `m2 with m1 given by cofinality of F in E and m2

given by cofinality of F in E on the cell pΣ1m1enq, we get that:

Σ1men “ Σ1m2 ˝ Σ1m1en P Gn`m

•
Ť

iPI F
i is a subspectra because:

Σ1p
ď

iPI

F iqn “
ď

iPI

Σ1F in Ď
ď

iPI

F in`1 “ p
ď

iPI

F iqn`1

Furthermore, it is cofinal using m given by the cofinal subspectra.
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l 2.1.10

We now can define what we call maps of spectra.

Definition 2.1.11 (Maps of spectra).
Let E,F be spectra. We consider the following set S

S “
!

pE1, f 1q| E1 is a cofinal subspectra of E, f 1 : E1 Ñ F
)

We define a equivalence relation on S:

pE1, f 1q „ pE2, f2q ô Dp rE, rfq P S, rE Ă E1 X E2is a cofinal subspectra and rf “ f 1|
rE
“ f2|

rE

We define a map from E into F as the equivalence class rE1, f 1s and we define

HompE,F q “ S{„

Verification of Definition 2.1.11:
This is indeed an equivalence relation. We show the associativity. Consider pE1, f 1q „ pE2, f2q
using p rE1, f1q and pE2, f2q „ pE3, f3q using p rE2, f2q.
Then consider p rE1 X rE2, f

2|
rE1X rE2

q P S.

rE1 X rE2 Ă E1 X E2 X E3 Ă E1 X E3

f 1|
rE1X rE2

“ f1|
rE2
“ f2|

rE1X rE2
“ f2|

rE1
“ f3|

rE1X rE2

So it give us that pE1, f 1q „ pE1, f2q
l 2.1.11

It is not apparent that maps can be composed with each other. To do so, we will need the
following lemma.

Lemma 2.1.12.
Let E,F be spectra and f : E Ñ F a function. If F 1 Ă F is a cofinal subspectrum, then DE1 Ă E
a cofinal subspectrum such that fpE1q Ă F 1.

Proof of Lemma 2.1.12:
Let S be the set of all subspectra G Ă E such that fpGq Ă F 1. Let E1 “

Ť

GPS G. Then E1 is a
subspectrum of E with fpE1q Ă F 1. Let’s show it is cofinal.
Consider en P En. Let en P e a cell of E. Then consider V the finite subspectra of E such that
e P V 3. Then, we have that fpV q is therefore a finite subspectra of F .

3We can always find such a spectrum by induction using the closure finite and using skeleton
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Then, there exists M such that fpVM q Ď FM . Then, V ěM “

"

˚ n ăM
Vn n ěM

is such that

fpV ěM q Ă F 1. Thus, V ěM Ă E1, proving the cofinality.
l 2.1.12

Corollary 2.1.13.
We can composed maps of spectra.

Proof of Corollary 2.1.13:
Let E,F,G be spectra and let rE1, f s P HompE,F q, rF 1, gs P HompF,Gq. Then, consider
f : E1 Ñ F . Using lemma 2.1.12 on F 1 , we get that DE2 a cofinal subspectra of E1 and thus
E such that fpE2q Ă F 1 (rE2, f |E2s “ rE

1, f s). Therefore, we define the composition of spectral
maps:

HompF,Gq ˆHompE,F q Ñ HompE,Gq

rF 1, gs ˝ rE1, f s “ rE2, g ˝ f |E2s

It is well defined. Indeed, take pE1, fq „ pE1˚, f˚q, pF 1, gq „ pF 1˚, g˚q.
Then, using pE2, f |E2q „ pE1, fq „ pE1˚, f˚q „ pE2˚, f |E2˚q, we get p rE, rfq rE Ă E2 X E2˚,
rf “ f |

rE
“ f˚|

rE
and pF , gq, F Ă F 1XF 1˚, g “ g|F “ g˚|F . Thus, using lemma 2.1.12, we finally

get pE, fq under p rE, rfq.
Consider pE, g ˝ fq.

Then E Ă E2 X E2˚and

g ˝ f |E “ g ˝ f |E “ g ˝ rf |E “ g ˝ f |E “ g ˝ rf |E “ g ˝ f˚|E “ g˚ ˝ f˚|E

Thus,
rE2, g ˝ f |E2s “ rE

2˚, g˚ ˝ f˚|E2˚s

l 2.1.13

Now that we have our maps that commute, we can finally define the category of spectra.

Definition 2.1.14 (Spectra category).
We define the category of spectra Sp.

ObpSpq “ tE| E is a spectrum as defined in 2.1.1u

SppE,F q “ HompE,F q

with idE “ rE, idEs
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Remark 2.1.15.
Let E P ObpSpq and let E1 Ă E be a cofinal subspectrum. Consider rE1, idE1s P SppE,E1q and
rE1, ιs P SppE1, Eq. Then

rE1, idE1s ˝ rE
1, ιs “ rE1, idE1s “ rE, idEs

rE1, ιs ˝ rE1, idE1s “ rE
1, idE1s

Thus, E and E1 are isomorphic in Sp.

Notation 2.1.16. We usually write a map f : E Ñ F without specifying it’s cofinal domain
because as showed in the previous remark, it is isomorphic to E in Sp.

Now, that we have our category Sp , we can consider the following functors on it.

Definition 2.1.17 (Functors on Sp).

• We define the functor Σ8:
Σ8 : CW Ñ Sp

Σ8pXq “ Σ8X

Σ8pfq “ tfnunPZ with fn “

"

idt˚u n ă 0

Σnf : ΣnX Ñ ΣnY n ě 0

• We define the functor Σ that shift our spectrum:

Σ : Sp Ñ Sp

pΣEqn “ En`1

pΣfqn “ fn`1

• We see that this also induce an inverse functor Σ´1

Σ´1 : Sp Ñ Sp

pΣ´1Eqn “ En´1

pΣ´1fqn “ fn´1
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2.1.2 Homotopy on spectra

Having our category Sp, we want, similarly to CW, to define an homotopy on it. For that, we
need some preliminary definitions and results.

Example 2.1.18.
We give here a example of cofinal spectrum that is central in spectral homotopy theory.

All cofinal subspectra of ΣnS are of the form Σn´rΣ8Sr.

Definition 2.1.19 (Smash product of a spectrum with a CW complex).
Let X P ObpCWq, E P ObpSpq. We define the smash product E ^X P ObpSpq:

pE ^Xqn “ En ^X

ΣpE ^Xqn – S1 ^ pEn ^Xq – pS
1 ^ Enq ^X – ΣEn`1 ^X

Σ1pE ^Xqn – ppn ^ idXqpΣEn ^Xq Ă En`1 ^X

Let f : E Ñ F be a map represented by pE1, fq and g : X Ñ Y a cellular map. Then, we define

f ^ g : E ^X Ñ F ^ Y represented by pE1 ^X, f ^ gq

Remark 2.1.20.
@X P ObpCWq

Σ8X – S^X
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We now can define spectral homotopy.

Definition 2.1.21 (Homotopy on spectra).
Let E,F P ObpSpq, f, g P SppE,F q. We say that f is homotopic to g pf „Hom gq if
D a map H : E ^ I` Ñ F such that the following diagram commute

E

FE ^ I`

E

''

f

��

ι0

//H
77

g

OO

ι1

Meaning there exists a cofinal subspectra where the functions they’re build out agree.
Homotopy equivalence is an equivalence relation. We also define the following sets

rE,F s “ HompE,F q{„Hom

πnpEq “ rΣ
nS, Es n P Z

Verification of Definition 2.1.21:
Homotopy is indeed an equivalence relation:

• reflexivity : Let f : E Ñ F be defined as rE1, f 1s. We define

H : E ^ I` Ñ F

H “ rE1 ^ I`, f 1 ^ idXs

H ˝ i0,1 “ rE, pf
1 ^ idXq ˝ i0,1s “ rE, f

1s “ rE1, f 1s “ f

• symmetry : Let H “ rE,Hs be an homotopy between f “ rE1, f 1s and g “ rE2, g2s. Then
consider

rH “ H ˝
`

idE ^ p1´ tq
˘

“ r rE,H ˝ idE ^ p1´ tqs

rH˝in “ r rE
˚, H˝

`

idE^p1´tq
˘

˝ins “ r rE
˚, H˝i1´ns “ rE

˚
, H˝i1´ns “

"

rE2, g2s n “ 0
rE1, f 1s n “ 1

• associativity : Let H1 “ rE1, H1s be the homotopy between f and g, H2 “ rE2, H2s the
homotopy between g and h. Then consider the following map

H “ rE1 X E2,

"

H1 ˝ pidX ^ 2tq 0 ď t ď 1
2

H2 ˝ pidX ^ 1´ 2tq 1
2 ď t ď 1

s
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This gives us the homotopy between f and h.

l 2.1.21

Similarly to CW, we can define pullbacks and pushforwards.

Definition 2.1.22 (Pullbacks & pushforwards on spectra).
Let E,F,G P Sp, f P SppE,F q, we define the pushforward of f

f˚ : rG,Es Ñ rG,F s

f˚
`

rhs
˘

“ rf ˝ hs

and the pullback of f
f˚ : rF,Gs Ñ rE,Gs

f˚
`

rhs
˘

“ rh ˝ f s

See that pf ˝ gq˚ “ f˚ ˝ g˚ and pf ˝ gq˚ “ g˚ ˝ f˚

Now, we find the first important property of spectral homotopy. It is a central equivalence and
a reason why spectra were defined in the first place.

Proposition 2.1.23.
Let E P ObpSpq. Using remark 2.1.18 and that a function f : Σn´rΣ8Sr Ñ E is just a map
f : Sr Ñ Er´n with further parts defined by suspension Σsf : Ss`r Ñ Σ1sEr´n Ă Er´n`s. Then

α : πnpEq – colimk πn`kpEkq

αprΣn´rΣ8Sr, f sq “ tfu “ t¨ ¨ ¨ , ˚, f,Σf, ¨ ¨ ¨ u

using for our colimit

πn`kpEkq
Σ
ÝÝÑ πn`1`kpΣEkq

pn˚
ÝÝÑ πn`k`1pEk`1q

Furthermore, under this form, we get that pushforward of a spectral function r : E Ñ F induce
the following commutative diagram:

πnpEq πnpF q

colimkπn`kpEkq colimkπn`kpFkq

//r˚

α

//
trk˚u

α
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Proof of Proposition 2.1.23:
This is well defined because f : Sr Ñ Er´n is unique.

• surjective: For any trfnsu P colimk πn`kpEkq, Then, Drf s P πn`rpErq minimal such that
rf s ‰ r˚s. Then, using f as a representative, we get αprΣn´rΣ8Sr, f sq “ tfnu.

• injective: Let trf su “ trgsu. Then, we can find an homotopy H : Sn`r ^ I` Ñ Er`s´n
between Σsf and Σsg for some s. Then, rΣn´r´sSr`s ^ I`, Hs is an homotopy of
rΣn´rΣ8Sr, f s and rΣn´rΣ8Sr, gs.

For the last part, this comes from the fact that α ˝ r˚pµq “ trrk ˝µsu “ trk˚utrµsu “ trk˚uαpµq.
l 2.1.23

Because πk`npEnq are abelian groups, we can give πkpEq the structure of their colimit, making
it an abelian group.
Now, we define, similarly to CW, the homotopy equivalence on sets.

Definition 2.1.24 (Homotopy equivalences on spectra).

• Let E,F P ObpSpq, f P SppE,F q. We say that f is a homotopy equivalence between
E and F if Dg P SppF,Eq such that f ˝ g „Hom idF , g ˝ f „Hom idE.

We say that E and F are homotopically equivalent pE „Hom F q if there exists an
homotopy equivalence f P rE,F s.

• Let E,F P ObpSpq, f P SppE,F q. We say that f is an weak homotopy equivalence
between E and F if

@n P Z, f˚ : πnpEq – πnpF q.

Verification of Definition 2.1.24:
Being homotopically equivalent is indeed an equivalence relation:

• reflexivity : E „Hom E using idE .

• symmetry : E „Hom F using f and g. Then F „Hom E using g and f .

• transivity : E „Hom F using f and g and F „Hom H using f 1 and g1. Then consider
f 1 ˝ f P SppE,Hq, g ˝ g1 P SppH,Eq. Then:

f 1 ˝ f ˝ g ˝ g1 „Hom f 1 ˝ idF ˝ g
1 „Hom f 1 ˝ g1 „Hom idH

g ˝ g1 ˝ f 1 ˝ f „Hom g ˝ idF ˝ f „Hom g ˝ f „Hom idE

Furthermore, being an homotopy equivalence is stronger than being a weakly homotopy equiv-
alence. Indeed, using f : E Ñ F, g : F Ñ E given by E „Hom F , we get that:
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@rhs P πnpEq, g˚ ˝ f˚rhs “ pg ˝ fq˚rhs “ rh ˝ g ˝ f s “ rh ˝ idEs “ rhs ñ g˚ ˝ f˚ “ idπnpEq

and similarly for f˚ ˝ g˚. Hence, f and g are weak homotopy equivalence.
l 2.1.24

Now, we define cones and wedge product on spectra.

Definition 2.1.25 (Mapping Cone on Spectra).

• Let E be a spectrum, we define the cone of E: CE “ E ^ pr0, 1s, 0q.

• Let f : E Ñ F be a spectra map. We define the mapping cone of f noted F Yf CE:

pF Yf CEqn “ Fn Yf 1n CE
1
n with pE1, f 1q representing f

We can see that for X P ObpCWq Σ8CX – CΣ8X.

Remark 2.1.26.
Mapping cones on spectra are independent from the the choice of representation. Indeed, see
that for pE1, f 1q, pE2, f2q both representing fwith pE, fq under both, we get that F Yf 1 CE

1 and
F Yf2 CE

2 have for mutual cofinal subspectrum F Yf CE and they are thus isomorphic in Sp.

Definition 2.1.27 ( Wedge product on spectra).
We define the wedge product on spectra. Let Eα be spectra

p
ł

αPA

Eαqn “
ł

αPA

Eαn

Σ1
´

ł

αPA

Eαn

¯

“
ł

αPA

Σ1Eαn
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Proposition 2.1.28.
Let iβ : Eβ :

Ž

αPAE
α be the standard inclusion maps. Then, this induce the following bijections

t´ ˝ iαuαPA : Homp
ł

αPA

Eα, F q –
ź

αPA

HompEα, F q

f Ñ
ź

αPA

pf ˝ iαq

ti˚αuαPA : r
ł

αPA

Eα, F s –
ź

αPA

rEα, F s

rf s Ñ
ź

αPA

rf ˝ iαs

Proof of Remark 2.1.28:
First, let E Ă

Ž

αPAE
α be a cofinal subspectrum. We have that E X Eα is cofinal in Eα.

Indeed, because cells e P Eαn are also cells of p
Ž

αPAE
αqn and because Σ1e P p

Ž

αPAE
αqn`1 is

by definition in Eαn`1, we get that Dm such that Σ1me P E X Eαn`m.

Inversely, with the same reasoning, let E
α

be a cofinal subspectrum of Eα. Then, we have that
Ž

αPAE
α

is a cofinal subspectrum of
Ž

αPAE
α.

Now, let’s show that

t´ ˝ iαuαPA : Homp
ł

αPA

Eα, F q –
ź

αPA

HompEα, F q.

• surjective: Let
ś

αPArE
α
, fαs P

ś

αPAHompE
α, F q. Then, consider r

Ž

αPAE
α
, pfαqαPAs.

t´ ˝ iαuαPA

ˆ

r
ł

αPA

E
α
, pfαqαPAs

˙

“
ź

αPA

rE
α
, fαs

• injective: Consider rE1, f s, rE2, gs be such that

t´ ˝ iαuαPA
`

rE1, f s
˘

“
ź

αPA

rE1 XE
α, f ˝ iαs “

ź

αPA

rE2 XE
α, g ˝ iαs “ t´ ˝ iαuαPA

`

rE2, gs
˘

Then consider rEα3 , hαs under rE1 X E
α, f ˝ iαs and rE2 X E

α, g ˝ iαs. We have

r
ł

αPA

Eα3 , phαqαPAs is under rE1, f s and rE2, gs, i.e. rE1, f s “ rE2, gs

For the homotopy part, we have to use that
´

Ž

αPAE
α
¯

^ I` “
Ž

αPAE
α ^ I` and that E is

cofinal in E ^ I` ðñ E “ E1 ^ I` with E1 cofinal in E.
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Then, an homotopy between rE1, f s and rE2, gs, with E1, E2 cofinal subspectra of
Ž

αPAE
α,

given by rE3 ^ I
`, hs is given one to one with

ś

αPArpE3 X E
αq ^ I`, h ˝ iαs.

l 2.1.28

Now, we want to prove the spectral version of the Whitehead theorem 2.1.32. To do so, we will
need the following technical lemmas.

Lemma 2.1.29.
Consider the following commutative diagram of spectra and functions:

F E

A B

//f
OO

g

//ι

OO

h

with f being a weak homotopy equivalence. Then, we can find a cofinal subspectra B1 Ă B with
functions h1 : B1 Ñ F and k : B1 ^ I` Ñ D such that:

1. A Ă B1.

2. h1|A “ g.

3. k ˝ ι0 “ f ˝ h1, k ˝ ι1 “ h|B1.

4. kpa, tq “ kpa, sq @a P A, t, s P I.

Proof of Lemma 2.1.29:
Let

T “

!

pA1, h1, k1q| A1 is a subspectrum and it follows property 1 to 4
)

and we work on T as a poset using

pA1, h1, k1q ď pA2, h2, k2q ðñ A1 Ă A2, h2|A1 “ h1, k2|A1^I` “ k1

Consider C a chain in the poset T. Let’s show it has a supremum.

We define M “

´

Ť

DPC D,
Ť

DPC hD,
Ť

DPC kD

¯

. It is easy to see that M still preserve all 4

properties and by construction, @D P C,D ďM
Thus, pT,ďq is an inductive poset. Using Zorn’s Lemma, we get D pB1, h1, kq maximal in T.

Now, let’s show B1 cofinal. Consider a cell e P Bn and Speq. By its definition, we have that
Speq – ΣnΣ8Sr. Then, Speq can be seen as a cofinal subset of ΣmS (with m “ n` r).
Then, consider rSpeq, hs P πmpEq. using the fact that f is a function and a weak equivalence,
we get that DrU, µs P πmpF q such that rU, f ˝ µs „Hom rSpeq, hs. Using 2.1.10, we thus have
U X Speq “W cofinal in Speq.
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Thus, Dw such that Σ1we PWn`w. Note that all this construction fall back on g if we end up in
A, and that thanks to f ˝ g “ h|A.
If @i P N,Σ1ipeq R B1, then du to the nature of W , we get that W X B1 “ t˚u. Thus,
pB1 \W,h1 \ µ,W, k \ κq P T ě pB1, h1, kq, which contradict the maximality of B1.

Thus, B1 cofinal.
l 2.1.29

Corollary 2.1.30.
Consider the following commutative diagram of spectra and maps with f a weak equivalence:

F E

A B

//f
OO

g

//ι

OO

h

__

k

Then, Dk P HompB,F q, k|A “ g such that f ˝ k „Hom h

Proof of Corollary 2.1.30:
Let f “ rF 1, f 1s, h “ rB1, h1s, g “ rA1, g1s with g1pA1q Ă F 1 and A1 Ă B1 (by using lemma 2.1.12).
Because f 1 “ f ˝ ι1F with ι1F its own inverse in Sp, we get that f 1˚ “ f˚ ˝ ι˚ and thus f 1 is a
weak equivalence function between F 1 and E. Then, we get the following commutative diagram
of spectra and functions:

F 1 E

A1 B1

//f 1

OO

g1

//ι

OO

h1

Using previous lemma 2.1.29, we get pB, h, kq with B cofinal in B1 and thus in B. We define
k “ rB, hs and the homotopy between f ˝ k “ rB, f ˝ hs and h “ rB, h1|Bs is given by H “

rB ^ I`, ks.
l 2.1.30

Corollary 2.1.31.
Let E,F P Sp and f P HompE,F q such that f is a weak homotopy equivalence. Then @G P Sp

f˚ : rG,Es – rG,F s.
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Proof of Corollary 2.1.31:

• surjectivity : Consider the map h : G Ñ F and the spectra ˚ “ Σ8˚. composed only of
based point. Then, we construct the following commutative maps diagram:

E F

˚ G

//f
OO

ι

//ι

OO

h

Then, using corollary 2.1.29, we get k : GÑ E such that f ˝ k „Hom h.

• injectivity : Consider the maps g1, g2 : GÑ E define as gi “ rGi, g
1
is such that f ˝ g1 „Hom

f ˝ g2 using the map h : G^ I` Ñ F . We define A “ G^ t0, 1u` and the map g : AÑ E
defined as

“

G1 ^ t0u \G2 ^ t1u, g
1
1 \ g

1
2

‰

.

Then, we construct the following commutative maps diagram:

E F

A G^ I`

//f
OO

g

//ι

OO

h

By using corollary 2.1.29, we get k : G ^ I` Ñ E such that k|A “ g. Thus, k is an
homotopy between g1 and g2.

l 2.1.31

Theorem 2.1.32 (Whitehead’s spectral theorem).
Let E,F P ObpSpq, f P HompE,F q. Then:

f is an homotopy equivalence ðñ f is a weak homotopy equivalence.

Proof of Theorem 2.1.32:

• ñ: Already done on definition 2.1.24.

• ð: Consider those 2 bijections

f˚rE,Es Ñ rE,F s
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f˚rF,Es Ñ rF, F s

and let g P SppF,Gq such that rf ˝ gs “ f˚rgs “ ridF s ( that exists by surjectivity).

Furthermore, consider g ˝ f : E Ñ E. We have f˚rg ˝ f s “ rpf ˝ gq ˝ f s “ ridY ˝ f s “ rf s “
f˚ridEs and by injectivity, this gives us that rg ˝ f s “ ridEs.

Thus, f is indeed an homotopy equivalence with inverse g.

l 2.1.32

We are now free to define the category of homotopy on spectra.

Definition 2.1.33 (Homotopy spectra category).
We define the homotopy spectra category: HoSp

ObpHoSpq “ ObpSpq

HoSppE,F q “ rE,F s

f is an isomorphism in HoSp ðñ f is a weak homotopy equivalence.

Here are a few interesting properties of homotopy on spectra.

Proposition 2.1.34.
Let X,Y P ObpHoCWq, E,F P ObpHoSpq. Then:

1. if X is weakly homotopically equivalent to Y , then E ^X „Hom E ^ Y and Σ8X „Hom

Σ8Y .

2. if E „Hom F , then E ^X „Hom F ^X

Proof of Proposition 2.1.34:

1. Let f : X Ñ Y be a weak homotopy equivalence. Then, by using whitehead’s theorem
1.4.12, it is an homotopy equivalence. Consider g : Y Ñ X, h1 the homotopy between
f ˝ g and idY and h2 the homotopy between g ˝ fand idX .

for E ^X, see that pE ^Xq ^ I` “ E ^ pX ^ I`q. Therefore, we get that idE ^ h1 is an
homology between pidE ^ fq ˝ pidE ^ gq “ pidE ^ f ˝ gq and idE^I` . It is similar for h2.

Σ8X comes because Σ8X “ S^X.

2. Let f : E Ñ F , g : F Ñ E be the homotopy equivalence with h1 the homotopy between
f ˝ g and idF and h2 the homotopy between g ˝ fand idE . Then, the maps f ^ idX and
g ^ idY are homotopy equivalence with homotopy maps h1 ^ idX and h2 ^ idX .
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l 2.1.34

Now, we want to show the homotopy extension on spectra, similarly to 1.4.16. We need the
following lemma.

Lemma 2.1.35.
Let E,H P Sp, F be a subspectrum E and G be a cofinal subspectrum of E ^ t0u` Y F ^ I`.
Given a function g : GÑ H, we can find K a cofinal subspectrum of E ^ I` containing G and
an extension of g named k : K Ñ H

Proof of Lemma 2.1.35:
We will construct the Kn layers and k|Kn Ñ H by induction.
We have that K0 “ t˚u, k|K0 “ ˚.
Then, suppose we have defined Kn layers and k|Kn Ñ H such that Kn cofinal in En ^ I`,
gn Ă Kn and k|Gn “ g|Gn .
For every cell e “ tem,Σ

1em, ¨ ¨ ¨ u of En`1zpEn Y Fn`1q, we can find a N large enough using
cofinality such that Σ1Nem ^ I` is attach to Kn

m`N and g is defined on Σ1Nem ^ t0u
`. Then,

we have a map

pgm`N Y km`N q : Σ1Nem ^ t0u
` Y Σ1NBem ^ I

` Ñ Hm`N

Then, by using the homotopy extension property on CW complexes 1.4.16, we get that we can
extend it into a map

ve : Σ1Nem ^ I
` Ñ Hm`N

Thus, we add all Σ1Nem ^ I
` and its suspensions to Kn YGn`1, getting Kn`1 and k|n`1

K using
ve. We have that by construction that Kn`1 is cofinal in En`1 ^ I`, that Gn`1 Ă Kn`1 and
k|Gn`1 “ g|Gn`1 .
Thus, by taking K “

Ť

nK
n and k “

Ť

n k|Kn , we get our desired result.
l 2.1.35

Corollary 2.1.36 (Homotopy extention on spectra).
Let E,H P ObpSpq, h P SppE,Hq. Let F be a subspectrum of E and g : F Ñ H a map. Then,
if we have that h|F „Hom g, then Dg : E Ñ H such that

h „Hom g, g|F “ g

Proof of Corollary 2.1.36:
Let h “ rE1, h1s and rU, f 1s “ f with f the homotopy between h|F „Hom g. Then, we define
G “ E1^t0uYU a cofinal subspectrum of E^t0uYF ^ I`. Then, using previous lemma2.1.35
on the function

h1 Y f 1 : GÑ H
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we get that a map k : E ^ I` Ñ H k “ rK, k1s such that k1 is an extension of h1 Y f 1. We thus
have our desired homotopy k between h and k ˝ i1 “ g such that k ˝ i1|A “ g.

l 2.1.36

2.1.3 Group structure on spectral homotopy sets

In this part, our goal is now to give further structure on rE,F s. To do so, here is a small
property that can help us simplify some construction.

Proposition 2.1.37.
Let E P ObpSpq Then DE1 P ObpSpq such that E „Hom E1 and the maps
pn : ΣE1n ãÑ E1n`1 are simple inclusions (i.e. ΣE1n Ă E1n`1)

Proof of Proposition 2.1.37:
Considering E as tEn, pnu. We use lemma 2.1.7 and get a spectra E1. We also get cellular maps
rn : E1n Ñ En that are homotopy equivalence (with inverse in) using hn. Then, we define the
spectral function :

r : E1 Ñ E

r “ trnu

because rn`1|ΣE1n “ pn ˝ Σrn, this is indeed a function.
Now, knowing that rk˚ : πqpE

1
kq – πqpEkq and that πnpF q – colim kπn`kpFkq we get that

@n P Z, this diagram

πnpE
1q πnpEq

colimkπn`kpE
1
kq colimkπn`kpEkq

//r˚

α

tprkq˚u

α

commute, thus, r is a weak homotopy equivalence. Using theorem 2.1.32, we get that r is an
homotopy equivalence between E and E1

l 2.1.37

We will now show a very important theorem in spectra. If it looks similar to 1.1.11, it is far
more complex to prove.

Theorem 2.1.38.
Let E P ObpHoSpq

ΣE „Hom E ^ S1
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Proof of Theorem 2.1.38:
Using proposition 2.1.37, we get that E „Hom E1, with

E1n “ En ^ tnu
` Y

ğ

kăn

Σn´kEk ^ rk, k ` 1s`
{„
, n P Z

rx, k ` 1s „ rΣn´k´1pkpxq, k ` 1s.
We will construct an homotopy equivalence f : E1 ^ S1 Ñ ΣE.
We define the following functions:

• ν 1 : S1 – S1 given in example 1.2.5 and using that S1 “ Σpt1u`q

• α : I2 – D2 the homeomorphism obtained by centering and then extending radially, thus
insuring that αpBI2q – S1.

• K : D2 ˆ I Ñ D2 the homotopy given by

Kpx, y, tq “
´

x cospπt{2q ´ y sinpπt{2q, x sinpπt{2q ` y cospπt{2q
¯

Kpx, y, 0q “ px, yq,Kpx, y, 1q “ p´y, xq. We furthermore have that KpS1q Ñ S1

• α´1˝K˝α is an homotopy between I2 and itself. Kpx, y, 0q “ px, yq, Kpx, y, 0q “ p1´y, xq.
Using the fact that S1 ^ S1 “ I2{pBI ˆ I Y I ˆ BIq, we define

H : pS1 ^ S1q ^ I Ñ S1 ^ S1

H “ q ˝K with q the quotient map

Then, we have H ˝ i0 “ idS1^S1 and H ˝ i1px, yq “ rν
1pyq, xs.

We consider E1n ^ S
1 as pEn ^ tnu

` ^ S1q Y
Ů

kănpS
n´k´1 ^ S1 ^ Ek ^ rk, k ` 1s` ^ S1q{„

Now, consider

fn : E1n ^ S
1 Ñ En`1

fnprξ, n, ysq “ pnprν
1npyq, ξsq P En`1 with rν 1npyq, ξs P S1 ^ En “ ΣEn

fnprs, x, ξ,m` t, ysq “ ppn ˝ Σpn´1 ˝ ¨ ¨ ¨ ˝ Σn´mpmq
”

s,H
`

x, ν1mpyq, t
˘

, ξ
ı

P En`1

with
”

s,H
`

x, ν1mpyq, t
˘

, ξ
ı

P Σn´m`1Em

with s P Sn´m´1, x, y P S1, ξ P Em, t P r0, 1s

After looking at it for a while, we see that they are continuous and that

pn`1 ˝ Σfnprs, x, ξ,m` t, ysq “ ppn`1 ˝ Σpn ˝ Σ2pn´1 ˝ ¨ ¨ ¨ ˝ Σn´m`1pmq
”

s,H
`

x, ν1mpyq, t
˘

, ξ
ı

“

“ fn`1|ΣE1n^S1rs, x, ξ,m` t, ys
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pn`1 ˝ Σfnprξ, n, ysq “ ppn`1 ˝ Σpnqrx, ν
1npyq, ξs

“ ppn`1 ˝ ΣpnqrHpx, ν
1npyq, 0q, ξs

“ fn`1|ΣE1n^S1rx, ξ, n, ys

Thus, tfnu define a function f : E1 ^ S1 Ñ ΣE. Let’s now show that this is a weak homotopy
equivalence.
We consider the following maps

gn : ΣEn “ En ^ S
1 Ñ E1n ^ S

1

gnprx, ξsq “ rξ, n, ν
1npxqs

with ξ P En, x P S1. Then, we have that fn ˝ pgn ˝ p
´1
n q “ idΣ1En . Indeed

fn ˝ pgn ˝ p
´1
n qppnpx, ξqq “ fn ˝ gnprx, ξsq “ fnprξ, n, ν

1npxqsq “ pnpν
12npxq, ξq “ pnpx, ξq

Furthermore, we have that pgn ˝ p´1
n q ˝ fn „Hom idEn^S1 . We have that

pgn ˝ p
´1
n q ˝ fn|En^tnu “ idEn^tnu. Thus, using an homotopy we defined on 2.1.7, we get

pgn ˝ p
´1
n q ˝ fn ˝ pH ^ idS1q : E1n ^ I

` ^ S1 Ñ E1n ^ S
1

pgn ˝ p
´1
n q ˝ fn ˝ pH ^ idS1q ˝ i0 “ pgn ˝ p

´1
n q ˝ fn ˝ idE1n^S1 “ pgn ˝ p

´1
n q ˝ fn

pgn ˝ p
´1
n q ˝ fn ˝ pH ^ idS1q ˝ i1 “ pgn ˝ p

´1
n q ˝ fn ˝ pin ˝ rnq^ idS1 “ pin ˝ rnq^ idS1 „Hom idE1n^S1

Using this, we get that
f˚ : πkpE

1
n ^ S

1q – πkpΣ
1Enq

Then, we consider the spectra Σ1E:

pΣ1Eqn “ Σ1pEnq Ă En`1

p1n : ΣpΣ1Eqn ãÑ pΣ1Eqn`1is given by: pn`1 ˝ Σ|Σ1En

pn`1pΣΣ1Enq – Σ1pΣ1Enq Ă Σ1pEn`1q

Σ1E is a cofinal subspectra of ΣE. indeed e P pΣEqn “ En`1, then Σ1peq P pΣ1Eqn`1.
Using this result, we consider the following commutative diagram:

πnpE
1 ^ S1q πnpΣ

1Eq

colimkπn`k
`

pE1 ^ S1qk
˘

colimkπn`kppΣ
1Eqkq

//f˚

α

tpfkq˚u

α

This induce that f is a weak homotopy equivalence. Thus, by theorem 2.1.32, f gives us that
E1n ^ S

1 „Hom Σ1E but because Σ1E cofinal in ΣE we finally get that:

E ^ S1 „Hom E1 ^ S1 „Hom Σ1E – ΣE

l 2.1.38
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The previous theorem allows us to give spectral homotopy set a group structure.

Corollary 2.1.39.
Let E,F P HoSp. We can give each set rE,F s the structure of an abelian group so that
composition is bilinear.

Proof of Corollary 2.1.39:
Since Σ is an invertible, rE,F s – rΣE,ΣF s. Thus, using 2.1.38 rΣE,ΣF s – rE ^ S1, F ^ S1s.
We define the function σ:

σ : rE,F s – rE ^ S1, F ^ S1s

σprf sq “ rf ^ idS1s

Consider σ2 : rE,F s – rE^S2, F ^S2s. We construct a co-multiplication on S2 with base point
x0 using our example 1.2.5.

µ : S2 – ΣS1 µ1
ÝÝÑ ΣS1 _ ΣS1 – S2 _ S2

We also define the inverse map ν:

ν :– ΣS1 ν1
ÝÝÑ ΣS1 – S2

Thus, we define µ for spectra

µ : E ^ S2 idE^µ
ÝÝÝÝÑ E ^ pS2 _ S2q – pE ^ S2q _ pE ^ S2q

ν : E ^ S2 idE^ν
ÝÝÝÝÑ E ^ S2

This gives E ^ S2 the structure of H-commutative cogroup on E ^ S2. Indeed:

`

idE^S2 , t˚u
˘

˝µ “
`

idE^ idS2 , t˚u
˘

˝pidE^µq “ idE^
`

idS2 , t˚u
˘

˝µ „Hom idE^ idS2 “ idE^S2

`

t˚u, idE^S2

˘

˝ µ “ idE ^ p
 

˚u, idS2

˘

˝ µ „Hom idE ^ idS2 “ idE^S2

`

idE^S2 _ µ
˘

˝ µ “ idE ^
`

idS2 _ µ
˘

˝ µ „Hom idE ^
`

µ_ idS2

˘

˝ µ “
`

µ, idE^S2

˘

˝ µ

`

ν, t˚u
˘

˝ µ “ idE ^
`

ν, t˚u
˘

˝ µ „Hom idE ^ t˚u “ t˚u

`

t˚u, ν
˘

˝ µ “ idE ^
`

t˚u, ν
˘

˝ µ „Hom idE ^ t˚u “ t˚u

µ ˝ T “ idE ^ pµ ˝ T q „Hom idE ^ µ “ µ
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Now, we can finally define our composition law on rE,F s:

˚ : rE,F s ˆ rE,F s Ñ rE,F s

rf s ˚ rgs “ rσ´2 ˝ µ
´

σ2prf sq, σ2prgsq
¯

s

µ : rE ^ S2, F ^ S2s ˆ rE ^ S2, F ^ S2s Ñ rE ^ S2, F ^ S2s

µprf s, rgsq is define as the homotopy class of the following map:

E ^ S2 µ
ÝÝÑ pE ^ S2q _ pE ^ S2q

f_g
ÝÝÝÑ pF ^ S2q _ pF ^ S2q

∆
ÝÝÑ F ^ S2

with ∆px, ˚q “ x “ p˚, xq
First, we see that ∆ ˝´_´ “ p´,´q as define in 1.2.4 and that it suffice to work on µ to show
our result.

• well defined : Let f, g : E ^ S2 Ñ F ^ S2, f „Hom f 1 using hf , g „Hom g1 using hg. Then,
let’s show µpf, gq „Hom µpf 1, g1q. Because hf : E ^ S2 ^ I` Ñ F ^ S2, consider

µphf , hgq “ ∆ ˝ phf _ hgq ˝ µ.

Because µ “ idE^I` ^ µ we have that µ ˝ i0 “ i0 ˝ µ. This imply

µphf , hgq ˝ i0 “ µphf ˝ i0, hg ˝ i0q “ µpf, gq

Thus µphf , hgq is our homotopy between µpf, gq and µpf 1, g1q

• associative: Let f, g, h P SppE ^ S2, F ^ S2q. We have to show that

µ
`

f, µpg, hq
˘

„Hom µ
`

µpf, gq, h
˘

µ
`

f, µpg, hq
˘

“ ∆ ˝ f _
`

∆ ˝ pg _ hq ˝ µ
˘

˝ µ

“ ∆ ˝

´

pf ˝ idq _ pg, hq ˝ µ
¯

˝ µ

“ ∆ ˝
`

f _ pg _ hq
˘

˝ pid_ µq ˝ µ
„Hom ∆ ˝

`

pf _ gq _ hq
˘

˝ pµ_ idq ˝ µ

“ ∆ ˝

´

`

pf, gq ˝ µ
˘

_ h ˝ id
¯

˝ µ

“ ∆ ˝ p∆ ˝ f _ g ˝ µq _ h ˝ µ
“ µ

`

µpf, gq, h
˘

• neutral element : Consider t˚u : E ^ S2 Ñ F ^ S2 the map that send everything into the
base point. Then, @f P SppE,F q

µpt˚u, fq “ ∆ ˝ t˚u _ f ˝ µ

“ pt˚u, fq ˝ µ
“ f ˝ pt˚u, idE^S2q ˝ µ

„Hom f ˝ idE^S2 “ f
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• inverse: @f P SppE,F q, consider f ˝ ν P SppE,F q. Then

µpf ˝ ν, fq “ ∆ ˝ pf ˝ ν _ fq ˝ µ

“ pf ˝ ν, fq ˝ µ
“ f ˝ pν, idE^S2q ˝ µ

„Hom f ˝ t˚u “ t˚u

• abelian: @f, g P SppE,F q

µpf, gq “ ∆ ˝ pf _ gq ˝ µ „Hom ∆ ˝ pf _ gq ˝ µ ˝ T “ ∆ ˝ pg _ fq ˝ µ “ µpg, fq

• composition is a bilinear map: Indeed consider the composition map:

˝ : rE,F s ˆ rF,Gs Ñ rE,Gs

rf s ˝ rgs “ rg ˝ f s

Then, we have that:

– rt˚us ˝ rgs “ rg ˝ t˚us “ rt˚us “ rt˚u ˝ f s “ rf s ˝ rt˚us

– rµpf, gqs ˝ rhs “ rh ˝ µpf, gqs “ rh ˝ pf, gq ˝ µs “ rph ˝ f, h ˝ gq ˝ µs “ rµph ˝ f, h ˝ gqs

– Consider h : E^S2 Ñ F ^S2. Then , using pidF^S2 , ˚q ˝µ ˝h „Hom idF^S2 ˝h “ h,
we get that

µ ˝ h „Hom ph_ hq ˝ µ

Thus:

rhs ˝ rµpf, gqs “ rµpf, gq ˝ hs “ rpf, gq ˝ µ ˝ hs “ rpf, gq ˝ ph_ hq ˝ µs “

“ rpf ˝ h, g ˝ hq ˝ µs “ rµpf ˝ h, g ˝ hqs

l 2.1.39

Note that the last part gives us that pullback and pushforward are group morphism.
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2.1.4 Induced homology and cohomology

Now, we want to show that homotopy sets have an exact sequence property on cofibres 2.1.44.
To do such a thing, we will need to define cofibres on spectra and to prove a fews intermediary
lemmas.

Definition 2.1.40 (Spectral cofibres sequence).
Let f P SppE,F q. We call the following sequence

E
f
ÝÝÑ F

j
ÝÝÑ F Yf CE

the special cofibre sequence.
We define a general cofibre sequence a sequence

G
g
ÝÝÑ H

h
ÝÝÑ K

such that DE,F P Sp and f P SppE,F q and the following diagram commute up to homotopy.

G H K

E F F Yf CE

//g //h

//f //j��

α

��

β

��

σ

with α, β, σ homotopy equivalence.

Proposition 2.1.41.
Given the following sequence:

E
f
ÝÑ F

j
ÝÑ F Yf CE

k1
ÝÑ E ^ S1 f^id

ÝÝÝÑ F ^ S1 Ñ ¨ ¨ ¨

with k1n|Fn “ ˚, k
1
n|CpEnqzrEn,1s “ id

Each pair of consecutive maps forms a cofibre sequence.

Proof of Proposition 2.1.41: [Swi17] 8.29 and 2.39. This is a straightforward result we won’t
have time to prove. Note that it also exists of CW-complexes. l 2.1.41
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Now, we give a remark that will help us simplify some of our later proofs.

Remark 2.1.42.
We can assume that f (or g in the general case) is an inclusion. Indeed, Let f “ rE1, f 1s, let
Mf “ F Yf 1 E

1 ^ I` 4. Then, using the rectraction map of E1 into F given by

νn : pMf qn Ñ Fn

νn|Yn “ id, νre, ts “ fptq

we get that this is an homotopy equivalence and furthermore, we have that Σ1νn “ νn`1|Σ1pMf qn
.

Thus, we have the following commutative homotopy diagram:

E F F Yf CE

E1 Mf Mf Yι CE
1

//f //j

//ι //j
��

ι

��

ν

��

σ

with σ defined using the fact that E1 ^ I` Yι CE
1 „Hom CpE1q

Now, consider the following technical lemma

Lemma 2.1.43.
Given the following homotopy commutative diagram:

G H K G^ S1

G1 H K 1 G1 ^ S1

//g //h //k

//g1 //h1 //k1
��

α

��

β

��

α^ id

��

κ

such that the rows are cofibre sequences. The, we can complete the diagram with κ.

Proof of Lemma 2.1.43:
wlog, we can assume that the rows are special cofibre sequences. Furthermore, we may assume
that g is a standard inclusion. We carefully chose the representatives of β “ rB1, β1s, g1 “ rA1, f 1s
and rA,α1s “ α such that gpAq Ă B and α1pAq Ă A1. Then, we have the following homotopy
commuting diagram.

4We have pMf qn “ Fn Yf 1 E1n ^ I
` with rx, 1s „ f 1npxq for x P E1n.
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A B B Yg CA A^ S1

A1 H 1 H 1 Yf 1 CA
1

A1 ^ S1

//g //j //

//g1 //j //
��

α1

��

β1

��

α1 ^ id

��

κ

Then, using the homotopy extension lemma 2.1.36, we can construct

β2 : B Ñ H 1

β2 ˝ g “ f 1 ˝ α1, β1 „Hom β

We thus define κ
κ|B “ β2, κ|CA “ Cpα1q

The following diagram commute strictly

A B B Yg CA A^ S1

A1 H 1 H 1 Yf 1 CA
1

A1 ^ S1

//g //j //

//g1 //j //
��

α1

��

β2

��

α1 ^ id

��

κ

making the previous one commute up to homotopy.
l 2.1.43

The previous lemma help us put in light this beautiful property of spectral homotopy theory.

Lemma 2.1.44.
Let G

g
ÝÑ H

h
ÝÑ K be a cofibre sequences. Then, @E P Sp, the following sequences:

rE,Gs
g˚
ÝÝÑ rE,Hs

h˚
ÝÝÑ rE,Ks

rG,Es
g˚
ÐÝÝ rH,Es

h˚
ÐÝÝ rK,Es

are exacts.

Proof of Lemma 2.1.44:

First, see that h ˝ g „Hom 0. Indeed h ˝ g „Hom j ˝ f : E Ñ F Yf CE. With j ˝ fpeq “ rfpeqs “
re, 1s. Then, we define

h : E ^ I` Ñ F Yf CE

h “ ridE ^ ts

with h ˝ i1 “ j ˝ f , h ˝ i0 “ t˚u “ 0.
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• Because h ˝ g „Hom 0, we have that ph ˝ gq˚ “ h˚ ˝ g˚ “ 0˚. Thus, Impg˚q Ď kerph˚q.
Now, let f : E Ñ H such that h˚rf s “ 0. We consider the following homotopy commuting
diagram

E E ^ I` E ^ S1 E ^ S1

H K G^ S1 H ^ S1

//ι //p //id

//h // //g ^ id��

f

��

h

��

f ^ id

��

κ

with h the homotopy between 0 and g ˝ f . Using lemma 2.1.43, we get κ such that
f ^ id „Hom pg ^ idq ˝ κ. Using σ : rE,F s – rE ^ S1, F ^ S1s, we get κ1 : E Ñ G,
κ “ κ1 ^ id. Thus,

pg ˝ κ1q ^ id “ pg ^ idq ˝ pκ1 ^ idq “ pg ^ idq ˝ κ „Hom f ^ id

Using the fact that σ is injective, we get that rg ˝ κs “ rf s, proving our point.

• because h ˝ g „Hom 0, we have that ph ˝ gq˚ “ g˚ ˝ h˚ “ 0˚. Thus, Imph˚q Ď kerpg˚q.
Now, let f : H Ñ E such that g˚rf s “ 0. We consider the following homotopy commuting
diagram

G H K G^ S1

˚ E E ˚

//g //h //k1

//id ////
��

f

��

κ

We thus have using lemma 2.1.43 κ with h˚prκsq “ κ ˝ h „Hom f , proving our point.

l 2.1.44

Knowing this lemma, we now can define induced (co)homology using spectra.

Definition 2.1.45 (Induced reduced homology and cohomology by spectra).
Let E P ObpHoSpq. We define the reduced homology induced by E:

E˚ : HoCW Ñ Ab

EnpXq “ πnpE ^Xq “ rΣ
nS, E ^Xs

Enpfq “ pidE ^ fq˚

with σn : defined as

σn : EnpXq “ rΣ
nS, E ^Xs – rΣn`1S,ΣE ^Xs – rΣn`1S, E ^ S1 ^Xs – rΣn`1S, E ^ ΣXs
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We also define the reduced cohomology induced by E:

E˚ : HoCW Ñ Ab

EnpXq “ rΣ8X,ΣnEs

Enpfq “ pΣ8fq˚

with σn : defined as

σn : En`1pΣXq “ rΣ8ΣX,Σn`1Es – rΣΣ8X,Σn`1Es – rΣ8X,ΣnEs

using cofinality of Σ8ΣX in ΣΣ8X

Verification of Definition 2.1.45:
Let’s show that tE˚, σ˚u and tE˚, σ˚u are respectively a reduced homology and a reduced
cohomology.
First, consider X Yf CA a mapping cone of f : AÑ X. Then

Σ8pX Yf CAq “ Σ8pXq YΣ8f Σ8CA “ Σ8X YΣ8f CΣ8A.

Similarly,
E ^ pX Yf CAq “ E ^X Yf E ^ CA “ pE ^Xq Yf CpE ^Aq

Those results are useful because they allow us to transform mapping cone on CW complexes
into mapping cone on spectra.

• @f P HoCWpA,Xq. Then

E ^A
idE^f
ÝÝÝÝÑ E ^X

idE^j
ÝÝÝÝÑ E ^ pX YidE^f CAq “ E ^ pX Yf CAq

is a cofibre sequence. Thus, using 2.1.44, we get the exact sequence

πnpE ^Aq
pidE^fq˚
ÝÝÝÝÝÝÑ πnpE ^Xq

pidE^jq˚
ÝÝÝÝÝÝÑ πn

`

E ^ pX Yf CAq
˘

• @f P HoCWpA,Xq. Then

Σ8A
Σ8f
ÝÝÝÑ Σ8X

Σ8j
ÝÝÝÑ Σ8pX Yf CAq “ Σ8X YΣ8f CΣ8A

is a cofibre sequence. Thus, using 2.1.44, we get the exact sequence

rΣ8A,ΣnEs
pΣ8fq˚
ÐÝÝÝÝÝ rΣ8X,ΣnEs

pΣ8jq˚
ÐÝÝÝÝÝ rΣ8pX Yf CAq,Σ

nEs

l 2.1.45
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Remark 2.1.46.

• See that thanks to it construction, the cohomology E˚ follows the wedge axiom. Indeed,
let iα : Xα ãÑ

Ž

αPAXα. Then, using proposition 2.1.28, we get that

tΣ8iαuαPAr
ł

αPA

Σ8Xα, F s –
ź

αPA

rΣ8Xα, F s

Now, using the fact that Σ8pX _ Y q “ pΣ8Xq _ pΣ8Y q, we get that

 

pΣ8iαq
˚
(

αPA
: Enp

ł

αPA

Xαq “ rΣ
8
ł

αPA

Xα,Σ
nEs –

ź

αPA

rΣ8Xα,Σ
nEs “

ź

αPA

EnpXαq

• Furthermore, it is also apparent that E˚ and E˚ follows the weak homotopy axiom.

Also, using this definition, we can extend the notion of cohomology to spectra.

Definition 2.1.47 (Cohomology of a spectrum).
Let E,F be a spectrum. we define the E-cohomology of F as:

EnpF q “ rF,ΣnEs

Note that for G
f
ÝÑ H

g
ÝÑ K a spectral cofibre sequence, using 2.1.44, we get the exact sequence

EnpGq
f˚
ÐÝÝ EnpHq

g˚
ÐÝÝ EnpKq

Furthermore, if @n P N, F´n “ ˚, Then, we can see the E-cohomology of F as:

EnpF q “ limk E
n`kpFkq

Verification of Definition 2.1.47:
Those two definitions are indeed the same. Indeed:

rF,ΣnEs “ r colimk Σ´kΣ8Fk,Σ
nEs

“ limk rΣ
´kΣ8Fk,Σ

nEs
“ limk rΣ

8Fk,Σ
n`kEs

“ limk E
k`npFkq

l 2.1.47
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2.2 Brown’s Representation Theorem

Now that we know that spectra induce cohomology, we want to show the inverse, i.e. any
cohomology with WHE and wedge axiom can be seen as given by a spectrum. We will dedicate
the following section to that result, using Brown’s representation theorem.

2.2.1 Main result

In all this section we work on contravariant functors

F : HoCW Ñ Gp

that they follows the following axioms

• Wedge W q :

pFiαqαPA : F p
ł

αPA

Xαq –
ź

αPA

F pXαq

• Mayer-Vietoris MV q :

For any CW-triad pX,A1, A2q pi.e. A1, A2 are subcomplex of X “ A1 Y A2q with
x1 P F pA1q, x2 P F pA2q such that

F piA1XA2qpx1q “ x1|A1XA2 “ x2|A1XA2 “ F piA1XA2qpx2q

Then, Dy P F pXq such that y|A1 “ x1, y|A2 “ x2

Proposition 2.2.1.
@Y P ObpCWq, r´, Y s : HoCW Ñ Set is a contravariant functor that satisfy W) and MV).

Proof of Proposition 2.2.1:

• W): Let show ti˚αuαPA is surjective: For an element indexed by trfαsuαPA, we have
f : _αPAXα Ñ Y defined with f ˝ iα “ fα. Then

ti˚αuαPApfq “ trf ˝ i
˚
αsuαPA “ trfαsuαPA

For injectivity: let rf s, rgs such that @α P A, rf ˝ iαs “ rg ˝ iαs using Hα : Xα ^ I
`. Then,

H : p
Ž

αPAXαq ^ I
` Ñ Y given by H ˝ iα “ Hα is the homotopy between rf s and rgs.

• MV): Let X “ A1 Y A2 with rf1s P rA1, Y s, rf2s P rA2, Y s such that
f1|A1XA2 „Hom f2|A1XA2 using H. Then, du to the fact that the inclusion in CW-complex
has the homotopy extension property, we get that there existsH : A1^I

` Ñ Y , H˝i0 “ f1,
H ˝ i1 “ f 11 with f 11|A1XA2 “ f2|A1XA2 . Thus, we define

g : X Ñ Y
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gpxq “

"

f 11pxq x P A1

f2pxq x P A2

rg|A1s “ rf1s, rg|A2s “ rf2s.

l 2.2.1

Note that because rΣ´, Y s – r´,ΩY s, we get that @Y P HoCW

r´,ΩY s : HoCW Ñ Gp

is a contravariant functor that follows W) and MV).
Now, we want to show 2.2.10. Every coming definitions and lemmas are needed preliminary
results. First, let’s compute the image of a singleton by F .

Proposition 2.2.2.
Let ˚ be the base point, F be a contravariant functor as defined earlier. Then

F p˚q “ 0

with 0 the zero group.

Proof of Proposition 2.2.2:
Using the fact that F ptx0uq “ F ptx0u _ tx0uq – F ptx0uq ˆ F ptx0uq, using map F pa Ñ pa, aqq
we get that |F ptx0uq| “ 1. Thus F ptx0uq “ 0

l 2.2.2

Now, we see that follows some very similar property to the one of cohomology.

Lemma 2.2.3.
Let X P ObpHoCWq and tXnunPN be an increasing sequence of subcomplexes such that X “
Ť

nPNXn and let F be a contravariant functor as defined earlier. Then:

tF pinqunPN : F pXq� colimn F pXnq

is a surjection.

Proof of Lemma 2.2.3:
We set X´1 “ tx0u. Consider the following sets

X 1 “
ď

ně´1

rn´ 1, ns` ^Xn
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A1 “
ď

kě´1,k odd

rk ´ 1, ks` ^Xk

A2 “
ď

kě´1,k even

rk ´ 1, ks` ^Xk

Then, we have that

• A1 YA2 “ X 1.

• A1 XA2 “
Ť

ktku
` ^Xk “

Ů

kXk –
Ž

kXk.
5

• A1 “
Ť

kě´1,k oddrk ´ 1, ks` ^Xk „Hom
Ť

kě´1,k oddtku ^Xk “
Ů

k oddXk –
Ž

k oddXk.

• A2 „Hom
Ž

k evenXk.
6

Thus, given any txnu P colimF pXnq
7, using the wedge axiom, we get that Dy1 P F pA1q with

y1|Xk “ xk for k odd. Similarly, Dy2 P F pA2q with y2|Xk “ xk for k even.
Then, let’s consider y1|A1XA2 “ y1|

Ž

kXk
:

• for k odd, y1|Xk “ xk.

• for k even, using i : Xk ãÑ Xk`1 and thus iXk “ iXk`1
˝ i,

y1|Xk “ F piXkqpy1q “ F piq ˝ F piXk`1
qpy1q “ F piqpxk`1q “ xk

It is the same proof for y2|A1XA2 and thus

y1|A1XA2 “ y2|A1XA2

Using MV), Dy1 P F pX 1q with y1|A1 “ y1, y
1|A2 “ y2. Thus, y1|Xk “ xk. Now, using the fact that

X 1 “
ď

ně´1

rn´ 1, ns` ^Xn „Hom

ď

ně´1

tnu` ^Xn „Hom

ď

ně´1

Xn “ X

we get that Dy P F pXq with y|Xk “ xk and thus tF pinqu is surjective.
l 2.2.3

Lemma 2.2.4.
For any map f ;X Ñ Y in HoCW and F a contravariant functor as defined earlier. The
following sequence

F pXq
F pfq
ÐÝÝÝ F pY q

F pjq
ÐÝÝÝ F pY Yf CXq

is exact.

5Here, we are using the isomorphism ϕ :
Ů

kXk Ñ
Ž

kXk with ϕpxqi “ x if x P Xi, x0 otherwise.
6Same way as for A1
7In txnu, xn “ F piqpxn`1q with i : Xk ãÑ Xk`1 the standard injection
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Proof of Lemma 2.2.4:

• kerF pjq Ď Im F(f): Because F pfq ˝ F pjq “ F pj ˝ fq “ F pt˚uq “ 08.

• kerF pjq Ě Im F(f): Let y P F pY q such that F pfqpyq “ 0.

Consider A1 “ r0,
1
2 s ^X, A2 “ r

1
2 , 1s

` ^X Yf Y . Then A1 YA2 “ Y Yf CX, A1 XA2 “

t1
2u
` ^X. Furthermore, we have that A2 „Hom Y and thus F pA2q “ F pY q. Furthermore,

i : A1 X A2 Ñ Y is given by id ^ f . Thus, let y1 “ 0 P F pA1q, y2 “ y P F pA2q “ F pY q.
Then 0 “ y1 “ F pfqpyq “ F piqpy2q. Using MV), we get that Dz P F pY Yf CXq such that
F pjqpzq “ z|Y “ F pfqpyq.

l 2.2.4

Now that we have some structure on F , we define the central notion of the Brown representation
theorem.

Definition 2.2.5 (Universal element).
Let F be a contravariant functor as defined earlier.
An element u P F pY q is called n-universal if

Tu : rSq, Y s Ñ F pSqq

is an isomorphism for q ă n and an epimorphism (surjective morphism) for q “ n. u is called
universal if it is n-universal for all n.
Tu is the natural transformation Turf s “ F pfqpuq P F pSqq.

Any element of F pY q is at least a ´1 universal element.

Remark 2.2.6.
If f : Y Ñ Y 1 is a map in CW and u P F pY q, u1 P F pY 1q are universal elements such that
F pfqpu1q “ u, then f induces an isomorphism for all n P N f˚ : πnpY q – πnpY

1q. Indeed, the
following diagram:

πnpY q πnpY
1q

F pSnq

//f˚

��
Tu �� Tu1

commute for all n. Because Tu and Tu1 are isomorphism, then so does f˚

8Using the fact that j ˝ f „Hom t˚u
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Now, let’s show the core of Brown’s theorem.

Lemma 2.2.7.
Let F be a contravariant functor as defined earlier.
For any Y P ObpCWq and n-universal element un P F pY q, we can find a CW-complex Y 1 with
Y Ă Y 1 and a n` 1-universal element un`1 P F pY

1q with un`1|Y “ un.

Proof of Lemma 2.2.7:
Let Y and un be a n-universal element in F pY q. @λ P F pSn`1q, we consider a copy of Sn`1

named Sn`1
λ and we construct Y _

Ž

λ S
n`1
λ .

Furthermore, if n ě 0, @α P πnpY q with Tunpαq “ 0, consider a representative fα : Sn Ñ Y and
attach a cell en`1

α to Y using x “ fpxq P Y, @x P Ben`1
α “ Sn. We define Y 1:

Y 1 “ Y
ď

α

en`1
α _

ł

λ

Sn`1
λ

Now, consider the following map
g :

ł

α

Snα Ñ Y

g ˝ ια “ fα

then, we get using Dn – CpSn´1q that

Y 1 – p
ł

λ

Sn`1
λ _ Y q Yg Cp

ł

α

Snαq

It is thus the mapping cone of g. Thus, using 2.2.4, we get that

F p
ł

α

Snαq
F pgq
ÐÝÝÝ F pY _

ł

λ

Sn`1
λ q

F pjq
ÐÝÝÝ F pY 1q

is exact.
Furthermore, using W) on F pY _

Ž

λ S
n`1
λ q, we get that Dv such that v|Y “ un and v|Sn`1

λ
“ λ.

Then,
F pgqpvq|Snα “ F pgqpunq|Snα “ F pfαqpunq “ Tunpαq “ 0

Thus, v P kerpF pgqq “ ImpF pjqq. Thus, Dun`1 P F pY
1q with un`1|Y_

Ž

λ S
n`1
λ

“ v.

Now, let’s show that un`1 P F pY
1q is n ` 1-universal. Considering the following commutative

diagram:

πqpY q πqpY
1q

F pSqq

//i˚

��Tun �� Tun`1
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• q ă n: Using the s.e.s

0 Ñ 0 “ πqp
ł

α

Snαq Ñ πqpY q
i˚
ÝÑ πq

`

Y Yg Cp
ł

α

Snαq
˘

Ñ 0

We get i˚ : πqpY q – πq
`

Y Yg Cp
Ž

α S
n
αq
˘

and with the wedge axiom on homotopy and
πqpS

n`1q “ 0, we get that i˚ : πqpY q – πqpY
1q. Thus, because our diagram commute and

Tun is also an isomorphism, we get that Tun`1 is an isomorphism.

• q “ n: Similarly, to before, we have that

πnp
ł

α

Snαq Ñ πnpY q
i˚
ÝÑ πn

`

Y Yg Cp
ł

α

Snαq
˘

Ñ 0

and using πnpS
n`1q “ 0, we have that i˚ : πnpY q� πnpY

1q is an epimorphism. From our
diagram, we had that Tun`1 was surjective.

Now, suppose Dβ P πnpY
1q, Tun`1pβq “ 0. Since i˚ is surjective, we consider α P πnpY q, i˚pαq “

β. Then, using
Tunpαq “ Tun`1 ˝ i˚pαq “ Tun`1pβq “ 0

We can thus consider the cell en`1
α P Y 1 and fα : Sn Ñ en`1

α a contractible space, which
shows us that i˚pαq “ 0 and thus Tun`1 is injective.

• q “ n` 1: @λ P F pSn`1q,
Tun`1piλq “ F piλqpun`1q “ λ

with iλ : Sn`1
λ Ñ Y 1 the inclusion. Thus, Tun`1 is an epimorphism for q “ n` 1.

l 2.2.7

The later lemma induce the following corollary

Corollary 2.2.8.
Let F be a contravariant functor as defined earlier.
@Y P ObpCWq and @v P F pY q, we can find a CW complex Y 1 containing Y and a universal
element u P F pY 1q with u|Y “ v.

Proof of Corollary 2.2.8:
We take Y´1 “ Y, u´1 “ v. Using inductively the previous lemma 2.2.7, we construct a sequence
tYnu and tunu s.t. Y´1 Ă Y0 Ă Y1 Ă ¨ ¨ ¨ and un|Yn´1 “ un´1.
Then, consider

Y 1 “
ď

ně´1

Yn

Using lemma 2.2.3, because tunu P colim F pYnq, we consider u P Y 1 s.t. tinupuq “ tunu.
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Now, let’s show that Y 1 and u are universal. We consider q ă n and the following diagram:

πqpYnq πqpY
1q

F pSqq

//in˚

��Tun �� Tu

Because Y 1zYn is composed of cells of dimension greater that n 9, we have that, similarly to the
proof of the lemma 2.2.7, in˚ is an isomorphism for q ă n. Thus, so does Tu. Because we can
choose n freely, we get that u is universal.

l 2.2.8

Now that we have a notion of universality on sphere, Sq, we want to extend that on all CW
complexes, like for 1.4.24. To do so, consider the following lemma.

Lemma 2.2.9.
Let F be a contravariant functor as defined earlier and Y be a space with universal element
u P F pY q, X,A P ObpCWq with A Ă X. Let g P CWpA, Y q and v P F pXq such that
v|A “ F pgqpuq. Then, Dh P CWpX,Y q such that h|A “ g and v “ F phqpuq.

Proof of Lemma 2.2.9:
we define the following sets

T “
´

pI` ^Aq _X _ Y
¯

{ „ with p0, aq „ a P X and p1, aq „ gpaq P Y

A1 “ pr0, 1{2s
` ^Aq YX,A2 “ Y Yg pr1{2, 1s

` ^Aq

Then A1 Y A2 “ T,A1 X A2 “ t1{2u
` ^ A – A. Using r0, 1{2s „Hom t0u, we get f1;A1 Ñ X10

an homotopy equivalence and same with f2 : A2 Ñ Y 11.
We thus have that Dv P F pA1q with v|X “ v and Du P F pA2q with u|Y “ u. Furthermore

v|A1XA2 “ F pf1qpv|Aq “ F pf1q ˝ F pgqpuq “ F pf2qpuq “ u|A1XA2

Thus, using MV), we get that Dw P F pT q with w|X “ v, w|Y “ u.
Now, using corollary 2.2.8, we can extend T into a CW-complex Y 1 with an universal element
u1 P F pY 1q with u1|T “ w. Using j : Y ãÑ Y 1 the inclusion, we get that

F pjqpu1q “ u1|Y “ w|Y “ u.

Thus, using remark 2.2.6, we get that @n P N

j˚ : πnpY q – πnpY
1q.

9by construction, see lemma 2.2.7
10f1pt, aq “ a, f |X “ id
11f2pt, aq “ gpaq, f |Y “ id
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Now, let’s consider the inclusion i : A^ I` Ă T ãÑ Y 1. we can see that it is in fact an homotopy
between iX : X ãÑ Y 1 restricted to A and j ˝ g. That is iX |A „Hom j ˝ g. Using the homotopy
extension property 1.4.16, we get that Dg : X Ñ Y 1 such that j ˝ g “ g|A and iX – g.
We thus have the following commutative diagram:

Y Y 1

A X

//j
OO

g

//ι

OO

g

with j a weak homotopy equivalence. Then, using Whitehead theorem 1.4.17, we get that j is an
homotopy equivalence with homotopy inverse rj. Then, we define h “ rj ˝ g and by construction,
j ˝ h „Hom g „Hom iX . Thus:

F phqpuq “ F pj ˝ hqpu1q “ F piXqpu
1q “ v

l 2.2.9

Theorem 2.2.10 (Brown’s representation theorem).
If F : HoCW Ñ Gp is a contravariant functor satisfying W) and MV), then there is a classi-
fying space Y P ObpCWq and an universal element u P F pY q such that

Tu : r´, Y s – F

is a natural equivalence.

Proof of Theorem 2.2.10:
Let t˚u be the base point. Using corollary 2.2.8, we get that DY P ObpCWq with an universal
element u P F pY q. Now, let’s show that

Tu : rX,Y s Ñ F pXq

is bijective @X P CW.

• surjective: Let v P F pXq. We consider A “ t˚u and g : A Ñ Y the base point function.
By 2.2.2, v|A “ 0 “ F pgqpuq Then, using lemma 2.2.9, we get that Dh P CWpX,Y q such
that hp˚q “ ˚ and Tuphq “ F phqpuq “ v.

Thus Tu is surjective.

• injective: Let Turg0s “ Turg1s for two maps g0, g1 : X Ñ Y . Let X 1 “ X ^ I`, A1 “
X ^ t0, 1u` and

g : A1 Ñ Y
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gpx, 0q “ g0pxq, gpx, 1q “ g1pxq.

We also define
p : X 1 Ñ X

ppx, tq “ x

and let’s consider v “ F pg0q ˝ F ppqpuq P F pX
1q. Then

v|X^t0u` “ F pg0qpuq “ F pgqpuq|X^t0u`

v|X^t1u` “ F pg0qpuq “ Tupg0q “ Tupg1q “ F pg1qpuq “ F pgqpuq|X^t1u`

This means that v|A1 “ F pgqpuq

Then, using lemma 2.2.9, we get h P CWpX 1, Y q such that h|A1 “ g. But then h is a
homotopy between g0 and g1. Thus, Tu is injective.

To show the naturality part, consider f P HoCWpX,Zq and the following diagram:

rX,Y s F pXq

rZ, Y s F pZq

//TupXq
OO

f˚

//TupZq

OO

F pfq

This diagram commute: Tupf
˚pµqq “ Tupµ ˝ fq “ F pµ ˝ fqpuq “ F pfq ˝ F pµqpuq “ F pfq ˝ Tupµq

l 2.2.10

Now, that we know that we can represent covariant functors F that follows W) and MV), can
we represent natural transformation between them? The answer is yes.

Theorem 2.2.11.
Let F, F 1 : HoCW Ñ Gp be contravariant functors with classifying space Y, Y 1 and universal
element u P F pY q, u1 P F pY 1q.
If T : F Ñ F 1 is a natural transformation, then D!rf s P rY, Y 1s such that the following diagram
commute:

rX,Y s rX,Y 1s

F pXq F 1pXq

//f˚

��

TupXq

//T pXq
��

Tu1pXq

Furthermore, if T is a natural equivalence, then we have that f is an homotopy equivalence.
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Proof of Theorem 2.2.11:
Consider rf s P rY, Y 1s such that

T pY q ˝ TupY qpidY q “ Tu1pY qprf sq

Then, Tu1pY qprf sq “ F 1pfqpu1q “ T pidF pY qq “ idF 1pY q and thus

T 1upXq ˝ f˚pµq “ F 1pf ˝ µqpu1q “ F 1pµq ˝ F 1pfqpu1q “ F 1pµq “ T ˝ TupXqpµq

For the unicity part, suppose g˚ is such that the diagram commute. Then,

T 1upY qpgq “ T 1upY q ˝ g˚pidY q “ T ˝ TupY qpidY q

That is, rgs “ rf s

If T is a natural equivalence, then using the diagram, we have that f˚ : πnpY q – πnpY
1q and

thus, using Whitehead spectral theorem 1.4.17, we get that f is an homotopy equivalence.
l 2.2.11

Remark 2.2.12.
If we have proven Brown’s representation theorem for contravariant functors into Gp, we can
see that our proofs don’t require any group structure. So Brown’s representation theorem works
also (and was historically first proven) for

F : HoCW Ñ Set
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2.2.2 Consequences on spectra

Now that we have proven Brown’s representation theorem, we want to see what consequences
this gives to spectra. To do so, we need to define a subcategory of Sp.

Definition 2.2.13 (Ω-spectra).
We define an Ω-spectrum as a spectrum E such that duals of pn using

A : rΣEn, En`1s – rEn,ΩEn`1s

named p1n : En ãÑ ΩEn`1
12 are weak homotopy equivalences.

In fact, we define the subcategory ΩSp Ă Sp:

ObpΩSpq “
!

E P Sp| E is an Ω-spectra
)

ΩSppE,F q “ SppE,F q

and the subcategory HoΩSp Ă HoSp:

ObpHoΩSpq “ ObpΩSpq

HoΩSppE,F q “ rE,F s

One very important property of Ω-spectra is that the expression of their induce cohomology is
greatly simplified.

Theorem 2.2.14.
If E P ΩSp, then @n P Z, we have a natural isomorphism

Tnp´q : Enp´q – r´, Ens.

Proof of Theorem 2.2.14:
Let knpXq “ rX,Ens. We consider the following natural equivalence chain

rΣX,En`1s
A
ÝÝÑ
–
rX,ΩEn`1s

p1n˚
ÐÝÝ
–

rX,Ens

This induce σn : kn`1pΣ´q – knp´q. Furthermore, @A Ă X, the sequence

rA,Ens
ι˚
ÐÝÝ rX,Ens

j˚
ÐÝÝ rX Y CA,Ens

12
rp1ns “ Arpns
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is exact from 2.2.1 and 2.2.4.
Thus, k˚ is a cohomology theory on HoCW. Since for an collection tXαuαPA is such that

ti˚αu :
“

ł

α

Xα, En
‰

–
ź

α

rXα, Ens

using 2.2.1, k˚ follows the wedge axiom.

Now, let’s construct our Tn : kn Ñ En. Let f P CWpX,Enq. We define the spectrum Σ8X
with

pΣ8Xqk “

"

˚ k ă n
Σk´nX k ě n

This is a cofinal subspectrum of Σ´nΣ8X and we use it to define a map

f : Σ´nΣ8X Ñ E

f “ rΣ8X, f 1s with f 1 “ p¨ ¨ ¨ , ˚, f,Σf,Σ2f, ¨ ¨ ¨ q

Tnprf sq “ rΣnf s P rΣ8X,ΣnEs “ EnpXq

We see that Tn is well defined. indeed, if f „Hom g using h : X ^ I` Ñ En, then maps

h : Σ´nΣ8X ^ I` Ñ E

h “ rΣ8X ^ I`, h1s, h1 “ ph,Σh, ¨ ¨ ¨ q

is an homotopy between f and g.

Furthermore, by considering the following diagram, we see that it commute.

rX,Ens rΣX,En`1s

rΣ8X,ΣnEs rΣ8ΣX,Σn`1Es

ks σn

��

T pXq

ks σn ��

Tn`1pΣXq

Insuring that T ˚ is a natural transformation.
Now, for the isomorphism part, using the following commutative diagram:

πkpEn`kq πk`1pΣEn`kq

πkpΩEn`k`1q πk`1pEn`k`1q

//Σ

pp1n`kq˚

��

ppn`kq˚

A
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we get the isomorphism

knpS0q “ π0pEnq – colimk πkpEn`kq “ colimk1 πk1´npEk1q – π´npEq “ EnpS0q.

Meaning that for all n P Z, TnpS0q : knpS0q – EnpS0q.
Thus, by using theorem 1.4.24, we get that T ˚ is a natural equivalence.

l 2.2.14

Similarlely to 2.1.7, we can lower the requirement to construct an Ω spectrum.

Proposition 2.2.15.
Let tEn,ĂpnunPZ be a sequence of CW complexes with Ăpn : En Ñ ΩEn`1 weak homotopy equiva-
lence. Then, DE1 P ObpSpq an Ω-spectrum such that there is a natural isomorphism.

E1np´q – r´, Ens

Proof of Proposition 2.2.15:
Using A : rΣEn, En`1s – rEn,ΩEn`1s, we consider pn : ΣEn Ñ En`1 such that Aprpnsq “ rĂpns.
Then, using lemma 2.1.7, we get E1 P Sp such that rn : E1n „Hom En. Now, let’s show that E1

is an Ω-spectrum. For this, take Ăp1n P Arιs. The following commutative diagram gives us our
wanted result:

πkpE
1
nq πkpΩE

1
n`1q πk`1pE

1
n`1q

πkpEnq πkpΩEn`1q πk`1pEn`1q

//
Ăp1n

��

prnq˚

ks
A

ks
A

+3
Ăpn ��

prn`1q˚

Thus, E1 is an Ω-spectrum. Now, using theorem 2.2.14, we get that

E1np´q – r´, E1ns – r´, Ens

l 2.2.15

We can now prove an extension of Brown’s representation theorem for cohomology.

Theorem 2.2.16 (Brown’s theorem on cohomology).
Let k˚ : HoCW Ñ Ab be a reduced cohomology that follows the wedge axiom. Then, DE P ΩSp
and a natural equivalence

T : E˚p´q – k˚p´q
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Proof of Theorem 2.2.16:
Let F “ knp´q : HoCW Ñ Ab. By 1.3.8, we have that F follows the MV). Then, by using
Brown’s representation theorem 2.2.10, we get that DEn P ObpCWq and a natural transformation
Tn such that

Tn : r´, Ens – F

Now, we have natural equivalences

rX,ΩEn`1s
A´1

ÝÝÝÑ
–

rΣX,En`1s
Tn`1
ÝÝÝÑ
–

kn`1pΣXq
σ
ÝÝÑ
–

knpXq
T´1
n

ÝÝÝÑ
–

rX,Ens

Then φn : En Ñ ΩEn`1 with rφns “ A ˝ T´1
n`1 ˝ σ

´1 ˝ TnpridEnsq and ψn : ΩEn`1 Ñ En with
rψns “ T´1

n ˝ σ ˝ Tn`1 ˝A
´1pridΩEn`1sq are such that:

rφn˝ψns “ A˝T´1
n`1˝σ

´1˝Tnrψns “ A˝T´1
n`1˝σ

´1˝Tn˝T
´1
n ˝σ˝Tn`1˝A

´1ridΩEn`1s “ ridΩEn`1s

rψn ˝ φns “ T´1
n ˝ σ ˝ Tn`1 ˝A

´1rφns “ T´1
n ˝ σ ˝ Tn`1 ˝A

´1A ˝ T´1
n`1 ˝ σ

´1 ˝ TnridEns “ ridEns.

Therefore, they are weak homotopy equivalences.
Thus, tEn, φnu induce by proposition 2.2.15 that DE1 an Ω-spectrum such that we have a natural
equivalence

E1˚p´q – r´, E˚s – k˚p´q

l 2.2.16

Now, to go further in this subject, we need the following lemma used to ease the following
constructions.

Lemma 2.2.17.
Let E,F P ObpSpq and let tfn : En Ñ FnunPN. If En “ ˚ for n ă N and if Σ1fn „Hom fn`1|Σ1En.
Then,

Df̃ : E Ñ F

f̃n „Hom fn

Furthermore, if @n ě N , lim1 Fn´1pEnq “ 0 as defined here, then f̃ is unique up to homotopy.
(i.e. if g : E Ñ F with gn „Hom f̃n, then g „Hom f̃).

Proof of Lemma 2.2.17:
Take f̃n “ fn “ ˚ for n ă N . Then, by iteration, we have that Σ1fn „Hom fn`1|Σ1En . Thus, us-
ing the homotopy extention on CW complex 1.4.16, we can find f̃n`1 such that fn`1 „Hom f̃n`1

and f̃n`1|ΣEn “ Σf̃n.

Thus, the collection of tf̃nu gives us a spectral map.
Now, let tEnunPN be an increasing sequence of subspectra (a fibration) of E such that YnPNE

n “

E.
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Using 1.4.21, we have @m, q P N the s.e.s.

0 Ñ
1

lim
n
F q´1pEnmq Ñ F qpEmq Ñ limnF

qpEnmq Ñ 0

With 2.1.47 and the fact that En “ ˚ for n ă N , we have that F qpEq “ limm F
q`N pEm`M q.

Thus, because we have the s.e.s.

0 Ñ
1

lim
n
F q`N´1pEnm`N q Ñ F q`N pEm`N q Ñ limnF

q`N pEnm`N q Ñ 0

going to limit on m and using permutation of limit, we get

0 limm lim1
n F

q`N´1pEnm`N q 0F qpEq limm limnF
q`N pEnm`N q

lim1
n F

q´1pEnq limnF
qpEnq

// // // //

A more thorough look at the inner working of the proof, and details on this limit permutation
can be found in the proof of 1.4.16.
Going along, we get the s.e.s.

0 Ñ
1

lim
n
F q´1pEnq Ñ F qpEq Ñ limnF

qpEnq Ñ 0

Then, consider the fibration En defined as

Enm “

"

Em m ď n
Σm´nEn m ě n

We have, using 2.1.47, the s.e.s.

0 Ñ
1

lim
n
F´1pEnq Ñ rE,F s Ñ limnF

0pEnq Ñ 0.

Then, we see that Σ´nΣ8En is cofinal in En. Thus,

F qpEnq – F qpΣ´nΣ8Enq – Fn`qpΣ8Enq “ Fn`qpEnq.

Thus, because lim1
n F

n´1pEnq “ 0, we get that

rE,F s – limnF
npEnq

rf s – limnrfns

proving the unicity up to homotopy of f̃ .
l 2.2.17
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We can now look at an equivalent to 2.2.11 for cohomology.

Theorem 2.2.18.
If E,E1 P ΩSp and T : E˚p´q Ñ E1˚p´q is a natural transformation of cohomology theories on
HoCW, then there is a spectral map f : E Ñ E1 such that Tn “ pΣ

nfq˚
In fact, if T is a natural equivalence, then f is an homotopy equivalence.
Furthermore, if lim1

nE
1n´1pEnq “ 013 with lim1 as defined here, then f is unique up to homotopy.

Proof of Theorem 2.2.18:
Consider Tn : Enp´q Ñ E1np´q. Using theorem 2.2.11, we get the unique rfns P rEn, E

1
ns such

that Tn “ pfnq˚. Now, we have to show that Σfn “ fn`1|ΣEn .
By considering the following commutative diagram:

rEn, E
1
ns rΣEn,ΣE

1
ns

rEn,ΩE
1
n`1s rΣEn, E

1
n`1s

//
Σ

pp1nq˚

��

ι˚

A´1

We get that that Dgn : En Ñ E1n such that rΣgns “ rfn`1|ΣEns. Then, using the following
commutative diagram

rX,Ens EnpXq En`1pΣXq rΣX,En`1s rX,Ens

rX,E1ns E1npXq E1n`1pΣXq rΣX,E1n`1s rX,E1ns

+3 ks
σ´1

ks

+3 ks
σ1´1

ks
��

pfnq˚

��

TnpXq

��

Tn`1pΣXq

��

pfn`1q˚

��

pgnq˚

ks
ι˚ ˝ Σ

ks
ι˚ ˝ Σ

gives us by unicity of fn up to homotopy that rfns “ rgns, which means that rΣfns “ rΣgns “
rfn`1|ΣEns. i.e.

Σfn „Hom fn`1|ΣEn

Now, using the cofinal subspectrum Eě, where Eěn “ En for n ě 0, Eěn “ ˚ otherwise, we
can use 2.2.17, We thus get a spectral map f : E Ñ E1 (with f defined on Eě) such that
fn „Hom fn

14. Then:

13Or simply, colimnrEn, E
1
ns – rE,E

1
s.

14If it is apparent why it work for n ě 0, we can extend this to negative by induction by adding gn bellow f̄0,
we know that gn „Hom fn. At the end, for any n, we can find a suitable representative.
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rΣ8p´q,ΣnEs rΣ8p´q,ΣnE1s

r´, Ens r´, E1ns

Enp´q E1np´q

//Σnf˚

//
pfnq˚

//
T

gives us that f represent the natural transformation T .
If T is a natural equivalence, then using that π´npEq “ rΣ

´nS, Es – rS,ΣnEs “ EnpS0q and
the previous diagram, we get that

f̄˚ : π´npEq – π´npE
1q

and thus, using Whitehead spectral theorem 2.1.32, that f is an homotopy equivalence.

To show the unicity, using 2.2.17, we get that

colimnrEn, E
1
ns – rE

ě, E1s – rE,E1s

We have by 2.2.11 that rfns are unique up to homotopy and therefore so is f .
l 2.2.18

Note that, contrary to Brown’s representation theorem, we don’t always get unicity of our map
up to homotopy. Let’s now define the following category of reduced cohomology, called stable.

Definition 2.2.19 (Stable cohomology category).
We define the stable cohomology category cohomS:

ObpcohomSq “

!

h˚p´q| h˚p´q is a cohomology that follows the wedge and WHE axiom
)

cohomS

`

h˚p´q, k˚p´q
˘

“

!

T : h˚p´q Ñ k˚p´q| T is a natural transformation
)
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Then, using the previous two theorem, we get the following theorem.

Corollary 2.2.20.
Using the following functors

V : HoΩSp Ñ cohomS

E Ñ E˚p´q

f Ñ pΣnfq˚

W : cohomS Ñ HoΩSp

h˚p´q Ñ E given by 2.2.16

T Ñ f given by 2.2.18

We get an category equivalence
HoΩSp – cohomS

Although a very nice and powerful result, we are not fully satisfied with it because we are dealing
with ΩSp and not Sp.
To extend our result, we need this topological result.

Lemma 2.2.21.
Let X P Top‚ be compact, tBiuiPN be a sequence of T1 pointed topological spaces such that
Bi ãÑ Bi`1 is closed. We can define colim Bi “ B P Top‚. Then

colimiPN HompX,Biq – HompX,Bq

tfiuiPN Ñ f with fpxq “ colimtfiupxq

Proof of Lemma 2.2.21:
wlog, we may suppose that B “

Ť

iPNBi and that B has the topology of the union. Then, the
Bi are closed and A is closed ðñ @i, AXBi is closed in Bi

If the injection is trivial, we still have to show the surjection. Let f be such that it doesn’t
factors through. Now, let d0 P B. Then, Di0 s.t. d0 P Bi0 . Then, consider f´1pBi0q a closed
subset of A. We consider k0 P Xzf

´1pBi0q and d1 “ fpk0q. Di1 ą i0 such that d1 P Bi1 , ¨ ¨ ¨

We thus have an increasing sequence of in with fpknq P Bin`1 . Then, we define Sn “ tfpkn`iquiPN Ă
fpXq. Sn XBm is a finite union of points. It is thus closed.
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We see that finite intersection of
Şm
i“0 Sni ‰ Ø but

Ş

nPN Sn “ Ø, which contradict the fact that
fpXq is compact because image of a compact.

l 2.2.21

Corollary 2.2.22.
Let tBiuiPN be a sequence of CW-complexes Bi ãÑ Bi`1 (with cellular maps). Then

colimiPN ΩpBiq – ΩpcolimiPN Biq

Proof of Corollary 2.2.22:
this comes from the fact that S1 is compact, that subcomplexes of CW-complexes are closed
and that they are Hausdorff.

l 2.2.22

Then previous corollary allows us to demonstrate the following theorem.

Theorem 2.2.23.
Let E P Sp. Then we can find ωE P ΩSp and r : E Ñ ωE an homotopy equivalence.

Proof of Theorem 2.2.23:
Let Ăpn : En Ñ ΩEn`1 be the dual of pn : En ãÑ En`1 by A. Then we define

E1n “ colimkΩ
kEn`k

using Ωkppn`kq : ΩkEn`k ãÑ Ωk`1En`k`1
15. Thanks to the previous corollary 2.2.22, we get

that

ΩE1n`1 “ ΩpcolimkΩ
kEn`1`kq

– colimk ΩpΩkEn`1`kq

“ colimk Ωk`1En`1`k

“ colimk Ωk`1En`k`1

“ colimk1 Ωk1En`k1

“ E1n

Thus, using this homeomorphism p1n, we can use proposition 2.2.15 on tE1n, p
1
nu that give us

ωE P ΩSp such that ωE˚p´q – r´, E1ns.

We know that
pωEqn “ E1n ^ tnu

` Y
ğ

kăn

Σn´kE1k ^ rk, k ` 1s`
{„
.

15It is indeed injective. Using the nature of Apfq “ f̂ , f̂pxq “ f̂pyq ðñ fpx, zq “ fpy, zq ñ x “ y.
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Then, by using ιn : En ãÑ colimkΩ
kEn`k “ E1n the standard injection, we can construct

rn : En Ñ pωEqn

rnpxq “ ιnpxq ^ tnu Y
ğ

kăn

Σn´kιkpxq ^ tku

Then, we have that

Σrnpxq “ Σ
´

ιnpxq ^ tnu Y
Ů

kăn Σn´kιkpxq ^ tku
¯

“ Σιnpxq ^ tnu Y
Ů

kăn Σn`1´kιkpxq ^ tku
“ rn`1|ΣpωEqn

Thus, we have a spectral function r : E Ñ ωE
Now, to prove that r is an homotopy equivalence, we will consider the following diagram:

πnpEq πnpωEq

π0pE
1
´nq

π0p colimkΩ
kE´n`kq

colimk1πn`k1pE
1
kq

colimkπ0pΩ
kE´n`kq

colimkπkpE´n`kq

//
r˚

α

T

U

A

with T given by 2.2.15, U given by 2.2.21 applied at the homotopy category.
Thus, we have that r is a weak homotopy equivalence and thus an homotopy equivalence by
using Whitehead spectral theorem 2.1.32.

l 2.2.23

In fact, the construction of ωE can be made into a functor, named spectrification 16. We thus
get the following result.

16details can be found in [GJMS`06], page 3-10
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Corollary 2.2.24.
Using spectrification ω : HoSp Ñ HoΩSp and the forgetful functor U : HoΩSp Ñ HoSp, we
get a category equivalence

HoSp – HoΩSp.

Combined with 2.2.20, this gives us that

HoSp – cohomS .

In fact, there exists a similar construction to show that homology on HoCW that follow the
wedge axioms and HoSp are equivalent categories. The proof is rather different from the
cohomology one, and quite interesting. It can be seen in [Swi17] 14.35.

Example 2.2.25.
Here are a view examples of representative spectra over cohomology.

• We can say that the singular reduced cohomology modulo A
´

H̃˚p´, Aq
¯

is induced by the

Eilenberg-Mac line spectrum noted HA. More information on this family of spectrum
can be found in [AGP08], 6.4.20. and in [Swi17], 10.1-4.

• The spectrum S induce what is called the stable reduced cohomotopy. It is named that
way because the equivalent homology, S˚p´q can be seen as

SnpXq – πnpS^Xq – πnpΣ
8Xq – colimkπn`kpX ^ S

kq.

Notation 2.2.26.
In case of Eilenberg-Mac line spectrum, we will write HA˚p´q for the induced reduced cohomology
and H˚p´, Aq for the unreduced one.
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Chapter 3

Vector Bundles and MU

Now that we have defined Sp and many of its properties. It may be time to define our central
notion, the MU spectrum 3.1.27. To do so, we will need to study vector bundles and Thom
spaces. If the first is an old notion, dating back to the start of analysis on curves and more
generally on manifolds, the latter was introduced by René Thom during the 50s as a generalisa-
tion of suspension. Once this is done, we will explain why MU is such an important notion by
taking a look at the notion of universal bundles.
Then, we will find an interesting link between geometry on manifolds (especially cobordism)
and the MU spectrum using Thom-Pontrjagin cobordism isomorphism.

3.1 Complex Vector Bundles

3.1.1 Central definitions and Thom space

We will give in this section an overview of complex vector bundle theory, and how it relates to
some special manifolds, the Grassmanians.

Definition 3.1.1 (Complex Grassmannians).
We define the Grassmannian GC

n,k in 3 equivalent ways. Those different definitions put light on
different aspects of the Grassmanian. If the first definition is the most abstract and simple one,
the second explains its links to other standard objects while the third puts greater emphasis on
its smooth structure.

1.
GC
n,k “

 

K Ă Cn`k| K is a linear subspace of dimension n
(

A Ă GC
n,k is open ðñ A “ tK| K Ă U,U open in Cn`ku
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2. Using SnC, the n-complex sphere, we define

Gn,k “
n
ź

i“1

Sn`k´1
C {„

px1, ¨ ¨ ¨ , xnq „ py1, ¨ ¨ ¨ , ynq ðñ span
`

x1, ¨ ¨ ¨ , xn
˘

“ span
`

y1, ¨ ¨ ¨ , yn
˘

with standard quotient topology

3.
GC
n,k “

!

M P Matn`k,npCq| rank M “ n
)

{„

M „ N ðñ DG1, G2 P GlnpCq,MG1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
1

. . .

1
a1,1 ¨ ¨ ¨ ¨ ¨ ¨ a1,n

...
...

ak,1 ¨ ¨ ¨ ¨ ¨ ¨ ak,n

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ NG2

Proposition 3.1.2.

1. GC
1,k “ CP k

2. GC
n,k – GC

k,n

3. GC
n,k is a compact smooth manifold without boundary of dimension 2nk1

Proof of Proposition 3.1.2:

1. From the second definition,
G1,k “ Sk{„ “ CP k

2. We use the first definition. Indeed, every vector space K of dimension n has a unique
vector space K 1 of dimension k such that Cn`k “ K ‘K 1. Thus

ϕ : Gn,k – Gk,n

ϕpKq “ K 1

1We are working with manifolds in R, but it is in fact a nk complex manifold. Also, the fact that it is smooth
compact means that it is also a CW complex.
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3. From the second definition, we get the compacity part from the fact that Sn`k´1 is com-
pact. To construct our atlas, we take our third definition and 1 ď i1 ă i2 ă ¨ ¨ ¨ ă in ď n.
We consider

Ui1,¨¨¨ ,in “ tM P GC
n,k| rkpMi1,¨¨¨ ,inq “ nu

with Mi1,¨¨¨ ,in construct using the i lines of M . Then, we define

Ai1,¨¨¨ ,in : Ui1,¨¨¨ ,in Ñ Cnk

Ai1,¨¨¨ ,inpMq “MM´1
i1,¨¨¨ ,in

and we send the k non trivial lines 2 into Cnk

We have that our maps overlap perfectly on Ui1,¨¨¨ ,inXUj1,¨¨¨ ,jn and using the rank theorem,
we have that every element is in one open of our atlas.

A “
!

pUi1,¨¨¨ ,in , A
i1,¨¨¨ ,inq

)

Thus, we have that GC
n,k is a complex nk compact smooth manifold without boundary and

thus a 2nk real compact smooth manifold without boundary.

l 3.1.2

Now, let’s define complex vector bundles. In fact, we can define real vector bundles from this
definition by simply switching C for R.

Definition 3.1.3 (Complex vector bundle).
A complex vector bundle ξ of dimension n over the topological set B is the couple pE, pq with
E a topological set, p : E Ñ B such that

1. @b P B, DU an open neighbourhood of b and hU : p´1pUq – U ˆ Cn an homeomorphism
such that the following diagram commute:

p´1pUq U

U ˆ Cn

//
p

??

p1hU

with p1 being the standard projection for product.

2. For any two such neighbourhood U , V , U X V ‰ Ø, then considering h1 the restriction of
hU , h2 the restriction of hV . Then the composite

pU X V q ˆ Cn h2
´1

ÝÝÝÑ p´1pU X V q
h1
ÝÑ pU X V q ˆ Cn

is given by h1 ˝ h
´1
2 pb, zq “ gU,V pbqpzq with gU,V : U X V Ñ GlnpCq.

2That are actually given by the row reduced form
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Notation 3.1.4.
For a n-dimensional vector bundle ξ : E

p
ÝÑ B, we call

• B is the base space of ξ.

• E is the total space of ξ.

• Cn is the fibre of ξ.

• p is the projection map of ξ.

• Uα are called the trivial covering of ξ

• gU,V are the transition functions of ξ.

Example 3.1.5.

• Let X be any topological space. the trivial bundle of dimension n over X pεnXq is
defined as E “ X ˆ Cn and p : E Ñ X the standard projection with transition functions
given by constant maps.

• If n “ 1, then we name a complex vector bundle over X as a line bundle over X.

• Let ˚ be a singleton. Then any complex vector bundle over it is trivial, i.e. of the form εn.

• We construct the tautological bundle. Let the base space be GC
n,k with total space given

using our first definition

E “
!

px, vq P GC
n,k ˆ Cn`k| v P x

)

ppx, vq “ x

and with trivial transition functions. We denote this bundle of dimension n as γCn,k

Definition 3.1.6 (Vector bundle isomorphism).
Let ξ1, ξ2 be complex vector bundles on X. We say that ξ1 is isomorphic to ξ2 if Df : E1 – E2

and the following diagram commute

E1 E2

X
��

p1

��

p2

f
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Furthermore f |p´1
1 pxq : p´1

1 pxq – p´1
2 pxq is such that f |p´1

1 pxq P GlnpCq. We say it is linear over

the fibres.

Now, let’s define a few basic tools on vector bundle.

Definition 3.1.7 (Induced complex bundle).
Let ξ be a complex vector bundle over Y of dimension n with total space E and f : X Ñ Y .
Then, we define the induced bundle f˚pξq over X is given by

f˚pEq “ tpx, eq P X ˆ E| fpxq “ ppequ

and with projection map pf px, eq “ x. It is also of dimension n.
We also get the continuous projection

rf : f˚pEq ãÑ E

px, eq Ñ e

and the diagram commute

X Y

f˚pEq E

//
f

OO

p

//
rf

OO

pf

Verification of Definition 3.1.7:
This is working because for every open U that trivialise E, we have that

p´1
`

f´1pUq
˘

“

!

px, eq P X ˆ E| e P p´1
`

U X Impfq
˘

, ppeq “ fpxq
)

But then using idˆ hU , we get that

p´1
`

f´1pUq
˘

–

!

px, y, vq P X ˆ Y ˆ Cn| , fpxq “ y P U
)

– f´1pXq ˆ Cn

and because we haven’t touch to x, the diagram of the definition commute.
l 3.1.7
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Example 3.1.8.
Let ξ be a n-dimensional vector space over X and let ι : ˚ Ñ X be the inclusion map. Then

ι˚pξq “ εn

Definition 3.1.9 (Sum of complex bundle).
Let ξ1, ξ2 be complex vector bundles over X1 and X2 with total space E1, E2 of dimension n1, n2.
We define their external sum ξ1 ˆ ξ2 over X1 ˆX2 given by

E1 ˆ E2
p1ˆp2
ÝÝÝÝÑ X1 ˆX2

It is a complex vector bundle of dimension n1 ` n2

If X1 “ X2 “ X, we define the Whitney sum given by

ξ1 ‘ ξ2 “ ∆˚pξ1 ˆ ξ2q

with ∆ : X Ñ X ˆX the diagonal map. Its total space is given by

E1 ‘ E2 “
 

px, e1, e2q P X ˆ E1 ˆ E2| p1pe1q “ x “ p2pe2q
(

Proposition 3.1.10.
Let ξ1, ξ2 be bundles on X, f : Y Ñ X, g : Z Ñ Y

1.
id˚Xpξq – ξ

2.
pf ˝ gq˚pξq – g˚

`

f˚pξq
˘

3.
f˚pξ1 ‘ ξ2q – f˚pξ1q ‘ f

˚pξ2q

Proof of Proposition 3.1.10:
This is an immediate consequence of the definitions.

l 3.1.10
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Now, let’s consider an interesting case of induced bundle on γn,k.

Proposition 3.1.11.

• Let i : GC
n,k Ñ GC

n,k`1 be the map induced by ι : Cn`k Ñ Cn`k`1. Then:

i˚pγCn,k`1q – γCn,k.

• Let j : GC
n,k Ñ GC

n`1,k be the map sending n dimensional vector space into n ` 1 ones by
adding the vector en`k`1. Then:

j˚pγCn`1,kq – γCn,k ‘ ε

with ε “ εpGC
n,kq

Proof of Proposition 3.1.11:

1. We consider the total space of i˚pγCn,k`1q

E “
!

px, e, vq P GC
n,k ˆG

C
n,k`1 ˆ Cn`k`1|v P e, e “ ppe, vq “ ipxq “ x

)

ppx, e, vq “ x

But this is3

En,k “
!

px, vq P GC
n,k ˆ Cn`k| v P x

)

ppx, vq “ x

Therefore,
i˚pγCn,k`1q “ γCn,k

2. We consider the total space of j˚pγCn`1,kq

E “
!

px, e, vq P GC
n,k ˆG

C
n`1,k ˆ Cn`k`1|v P e, e “ ppe, vq “ jpxq “ x‘ ă en`k`1 ą

)

ppx, e, vq “ x

This is equal to

E “
!

px, v, zq P GC
n,k ˆ Cn`k ˆ C|v P e

)

ppx, v, zq “ x

3using the fact that x is contained in Cn`k
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that can be written as

E “
!

px, y1, y2, v, zq P G
C
n,k ˆG

C
n,k ˆG

C
n,k ˆ Cn`k ˆ C|v P y1, y1 “ x “ y2

)

ppx, y1, y2, v, zq “ x

which is the total space and projection map of γCn,k ‘ ε. Thus,

j˚pγCn`1,kq “ γCn,k ‘ ε.

l 3.1.11

Consider C8 “ colimnCn, the sets of all finite sequence in C. We use C8 to define properly
the infinite Grassmannian.

Definition 3.1.12 (Infinite Grassmannian and its vector bundle).
Using ik : GC

n,k Ñ GC
n,k`1, we define the infinite k-Grassmannian GC

n :

GC
n “ colimk G

C
n,k

GC
n “

 

K Ă C8| K is a linear subspace of dimension n
(

Note that if GC
n is still a CW complex, it is no longer a manifold.

Using rik given by 3.1.7, we define the n complex vector bundle

γCn “ colimk γ
C
n,k.

It can be defined as:
E “ tpx, vq P GC

n ˆ C8|v P xu

ppx, vq “ x

Using i : GC
n,k Ñ GC

n , we get that

i˚pγCn q “ γCn,k

Similarly to GC
n,k, the map j : GC

n ãÑ GC
n`1 given by colimit of jk : GC

n,k ãÑ GC
n`1,k induce that

j˚pγCn`1q “ γCn ‘ ε
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Now, before continuing, we need to define an important notion, paracompactness.

Definition 3.1.13 (Paracompact).
Let X be a topological space. We say it is paracompact if:

1. X is Hausdorff.

2. X is locally compact.

3. X is a union of countable union of compact subspaces.

Example 3.1.14.
The following spaces are paracompact.

• Compact Hausdorff spaces.

• CW complexes.

• Metric spaces.

Proof of those assertion be found in [Hat03], page 35-37.
Now, let’s define the notion of partition of unity.

Definition 3.1.15 (Partition of unity).
Let X P Top and let U “ tUαuαPA be an open cover of M . A partition of unity subordinate
to U is a family of continuous maps tψαuαPA with ψα : X Ñ R such that:

• @x PM,@α P A, 0 ď ψαpxq ď 1.

• supppψαq Ă Uα.

• @x PM, D nx P N such that
ř

αPA ψαpxq “
řnx
i“1 ψαipxq.

• @x PM ,
ř

αPA ψαpxq “ 1.

Paracompacts are very important because they induce partitions of unity.

Theorem 3.1.16.
Let tUαu be an open covering of X a paracompact. Then, Dtϕαu a partition of unity on tUαu.
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A proof is given in [Bre13], chapter I, 12.11.
Now that we have refreshed ourselves about paracompact, let’s go back to our vector bundles.

Definition 3.1.17 (Hermitian metric on complex vector bundle).
An Hermitian metric on complex vector bundle ξ with base set X is a continuous map

ă ´,´ ą: E ˆ E Ñ R

such that @x P X,
ă ´,´ ą: p´1pxq ˆ p´1pxq Ñ R

is a positive inner Hermitian product.

Lemma 3.1.18.
Let X be a paracompact. Then, for any complex vector bundle ξ on X, we can give ξ an
Hermitian metric.

Proof of Lemma 3.1.18:
First, Let’s show that every trivial complex vector bundle has a metric. Take

p : X ˆ Cn Ñ X

Then, for any positive definite Hermitian matrix H of dimension n, we can define an Hermitian
metric given as:

ă v, w ąT“ vTHw

For v, w P p´1pxq “ txu ˆ Cn
Now, Let ξ be any complex vector bundle on X a paracompact. Then, let’s consider U the open
subsets of X given by ξ such that the following diagram commute

p´1pUq U

U ˆ Cn

//
p

??

p1hU

Then, we can construct on p´1pUq an Hermitian metric given by

ă v, w ąU“ă hU pvq, hU pwq ąT

For v, w P p´1pxq, x P U .
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Now, because X is a paracompact, we get that there exists a partition of unity tσUu. Then, we
can construct our Hermitian metric over E as

ă e, f ą“
ÿ

U

σU pxq ă v, w ąU

with e “ px, vq, f “ px,wq. l 3.1.18

Now that we have an Hermitian metric on our total space, we can define the following bundles
on it.

Definition 3.1.19 (Disk and Sphere bundles).
Let ξ be a complex vector bundle on B equipped with an Hermitian metric. Then, we define the
disk bundle Dpξq on B the given by :

ED “
!

px, vq P E| |v| ď 1
)

p “ p|ED

We also define the sphere bundle Spξq on B with:

ES “
!

px, vq P E| |v| “ 1
)

p “ p|ES

Remark 3.1.20.
For every Hermitian metric we can associate to ξ, they induce the same metric topology
because every metric on Cn are equivalent. Therefore, given two Hermitian metrics on ξ, we
have that the Dpξq and Spξq induced would be homeomorphic. Thus, they are only defined by ξ.

Furthermore, if Dpξq and Spξq are fibre bundles, they are not at all vector bundles.
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Example 3.1.21.

1. Consider εnX. Then:
DpεnXq “ X ˆDn

C

SpεnXq “ X ˆ SnC

2. Let ξ1, ξ2 be two bundles with Hermitian metrics. Then, using the product metric, we get
that:

Dpξ1 ˆ ξ2q “ Dpξ1q ˆDpξ2q

Spξ1 ˆ ξ2q “ Spξ1q ˆ Spξ2q

3. We have that
Dpξ1 ‘ ξ2q “ Dpξ1q ˆDpξ2q

L

∆

with
∆ “

 

pe, e1q P Dpξ1q ˆDpξ2q|ppeq ‰ ppe1q
(

.

Similarly,
Spξ1 ‘ ξ2q “ Spξ1q ˆ Spξ2q

L

∆

with
∆ “

 

pe, e1q P Spξ1q ˆ Spξ2q|ppeq ‰ ppe1q
(

.

4. Let ξ be a bundle on B with Hermitian metric and f : X Ñ B. f˚pξq inherit the metric
form ξ. Let v, w P p´1pxq, then

ă v, w ąf“ă rfpvq, rfpwq ą

with rfpvq, rfpwq P p´1pfpxqq. We can therefore define the disk and sphere bundles. Fur-
thermore, the restriction

rf : Dpf˚ξq ãÑ Dpξq

rf : Spf˚ξq ãÑ Spξq

are well defined.

Proposition 3.1.22.
Let ξ be a complex vector bundle with base space X and total space E. Then,

X is Hausdorff compact ñ Dpξq, Spξq are compact too.
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Proof of Proposition 3.1.22:
Because X is Hausdorff compact, we have an Hermitian metric. Now, let’s show that Dpξq is
compact. We will prove this result using the that a space is compact if and only if every infinite
net has a convergent subnet.4

Let txλuΛ be an infinite net in E. Then, tppxλquΛ is an infinite net in X. Because it is compact,
there exists Λ1 such that tppxλquΛ1 converge into x P X.
Then, consider x P U with p´1pUq – U ˆ Dn

C. Because tppxλquΛ1 converge into x, there exist
Λ1 such that tppxλquΛ1

Ă U . Thus,

txλuΛ1
Ă p´1pUq – U ˆDn

C

Using π : p´1pUq Ñ Dn
C defined using the standard projection, we define tπpxλquΛ1

a net of Dn
C.

By compacity, we get that there exists a subnet λ2 such that it converge into v.
Thus, we get that txλuΛ2

converge into h´1
U px, vq. Thus, Dpξq is compact.

For Spξq, we simply see that this a closed set of Dpξq.
l 3.1.22

Now that we have disk bundles, we want to define something called the Thom space. This is an
extension of both the concept of compactification and of the concept of suspension as shown in
3.1.26 and in 3.1.24. It has many very interesting properties.

Definition 3.1.23 (Thom space).
Let ξ be a complex vector bundle over B equipped with an Hermitian metric. Then, we define
the Thom space of ξ noted T pξq P ObpTop‚q :

T pξq “
`

Dpξq{Spξq, Spξq
˘

Furthermore, if f : X Ñ B, using the fact that q : Spf˚ξq Ñ Spξq, this induce a map name the
Thomification of f :

T pfq : T pf˚ξq Ñ T pξq

T pfq “ π ˝ rf

with π the quotient map.

4A proof of this result is in [Pen83]
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Proposition 3.1.24.
Let X,Y be topological spaces. ξ1, ξ2 are complex vector bundles with Hermitian metric on X,Y

1.
T pεnXq – X` ^ S2n

R

2.
T pξ1 ˆ ξ2q – T pξ1q ^ T pξ2q

3.
T pξ1 ‘ ε

nXq – T pξ1q ^ S
2n
R

Proof of Proposition 3.1.24:

1. First, we have to see that for n ě 1, we have

Dn
C – D2n

R

SnC – S2n´1
R

D2n
R {S

2n´1
R – S2n

R

Using this, we get that

T pεnXq –

´

pX ˆD2n
R q{pX ˆ S

2n´1
R q, pX ˆ S2n´1

R q

¯

– X` ˆ pD2n
R {S

2n´1
R q

M

X` _ pD2n
R {S

2n´1
R , S2n´1

R q

– X` ^ S2n
R

2. We write Dpξiq as Di, Spξiq as Si. Then

T pξ1 ˆ ξ2q “

´

D1 ˆD2

L

S1 ˆ S2, S1 ˆ S2

¯

–

´

pD1{S1, S1q ˆ pD2{S2, S2q

N

pD1{S1, S1q _ pD2{S2, S2q

¯

“ T pξ1q ^ T pξ2q

3.
Dpξ1 ‘ ε

nq “ Dpξ1q ˆX ˆD
n
C

M

∆

with ∆ “
 

pe, x, vq P Dpξ1q ˆX ˆD
n
C| ppeq “ x

(

Thus, we have that
Dpξ1 ‘ ε

nq – Dpξ1q ˆD
n
C
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Similarly, we have that
Spξ1 ‘ ε

nq “ Spξ1q ˆ S
n
C

Therefore:

T pξ1 ‘ ε
nq –

´

Dpξ1q ˆD
2n
R

M

Spξ1q ˆ S
2n´1
R , Spξ1q ˆ S

2n´1
R

¯

–

ˆ

´

Dpξ1q{Spξ1q, Spξ1q

¯

ˆ pS2n
R , ˚q

N

´

Dpξ1q{Spξ1q, Spξ1q

¯

_ pS2n
R , ˚q

˙

– T pξ1q ^ S
2n
R

l 3.1.24

Remark 3.1.25.
Let X be a CW complex, ξ a n complex vector bundle on it. Then, we can give T pξq a CW
structure.
Given a cell structure on X,

 

emα | α P Jm
(

, then the cell structure on T pξq is given by
 

em`2n
α | α P Jm

(

.
Full details can be found in [Swi17], 12.26.

Lemma 3.1.26.
Let X be a compact Hausdorff space, ξ be a complex vector space on X with total space E. Then,
we have that

T pξq – E:

with E: “ pE Y t8u,8q the one point compactification of E.

Proof of Lemma 3.1.26:
Because every Hausdorff compact space is paracompact, we can define T pξq. Because X is com-
pact, we have, using proposition 3.1.22, that Dpξq is compact and therefore so is T pξq.

Now, we have to see that E is Hausdorff. Indeed, for e ‰ e1 P E. If ppeq ‰ ppe1q, then
ppeq P A, ppe1q P A1 and we get e P p´1pAq, e1 P p´1pA1q, p´1pAq X p´1pA1q “ Ø. If not, then
e “ px, v1q, e1 “ px,wq. Then, because Cn is Hausdorff, we have that v and w are separated and
thus so is e and e1.

Now, consider
α : r0, 1s Ñ Rě Y t8u

αptq “

"

tanpπ2 tq 0 ď t ă 1
8 t “ 1
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We construct
f : Dpξq� E:

fpeq “ αp|e|q.e

This is a continuous map such that f : Dpξq{Spξq “ T pξq Ñ E: is a continuous bijective function
from a compact into an Hausdorff space5. Thus, f is an homeomorphism.

l 3.1.26

Now that we know what are Thom space, we can finaly define the MU spectrum.

Definition 3.1.27 (MU spectrum).
Because GC

n is a CW complex, it has an Hermitian metric. Having MUpnq “ T pγCn q, we define
the MU spectrum:

pMUq´n “ t˚u

pMUq2n “MUpnq

MU2n`1 “ ΣMUpnq

with
p2n “ idΣMUpnq

p2n`1 “ T pjq : Σ2MUpnq “ T pj˚pγn`1qq ãÑMUpn` 1q.

A good question is why are we so interested in MU . It looks like any other spectra. To give an
element of answer, we will have to work on the notion of universal bundle.

3.1.2 Universal bundles

First, we want to show 3.1.30. To do so, we will need the followings propositions that simplify
the later work.

Proposition 3.1.28.

1. A vector bundle p : E Ñ X ˆ ra, bs is isomorphic to the trivial bundle if and only if its
restriction p´1pX ˆ ra, csq and p´1pX ˆ rc, bsq are both isomorphic to the trivial for some
c P ra, bs.

2. For a vector bundle p : E Ñ X ˆ I, there exists a trivial covering tUαu of X such that

p´1pUα ˆ Iq – Uα ˆ I ˆ Cn.

5If X is Hausdorff, then so does X:
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Proof of Proposition 3.1.28:

1. ñ: By definition.

ð: We have E1 “ p´1pXˆra, csq, E2 “ p´1pXˆrc, bsq, and the homomorphism h1 : E1 –

X ˆra, csˆCn, h2 : E2 – X ˆrc, bsˆCn. Because they may not coincide, we define using

h1 ˝ h
´1
2 : X ˆ tcu ˆ Cn – X ˆ tcu ˆ Cn

q : X ˆ rc, bs ˆ Cn – X ˆ rc, bs ˆ Cn

qpx, t, vq “ px, t, h1 ˝ h
´1
2 pvqq

Then, we define
h : E – X ˆ ra, bs ˆ Cn

h “

"

h1pxq x P E1

q ˝ h2pxq x P E2

2. @x P X, using compactness of I, we can find open neibourhood Ux,1, ¨ ¨ ¨ , Ux,k and 0 “
t0 ă ¨ ¨ ¨ ă tk “ 1 such that the bundle is trivial over Ux,i ˆ rti, ti`1s.

Then, by using the first point 1q on Uα “
Ş

k Ux,k we get that Uα ˆ I is trivial.

l 3.1.28

Lemma 3.1.29.
Let X be a paracompact, then the restriction of p : E Ñ X ˆ I over X ˆ t0u and X ˆ t1u are
isomorphic.

Proof of Lemma 3.1.29:
Let E0 “ ι˚0pEq, E1 “ ι˚1pEq. Using proposition 3.1.28, we have an open covering tUαu of X such
that E is trivial over Uαˆ I. Using paracompactness, we can then find a countable subcovering
6 tViu and a partition of unity tφiu on tViu. Thus, we have that E is trivial over Vi ˆ I.

Then, let ψi “
ři
j“0 φj . We define Xi “ tpx, tq P X ˆ I| t “ ψpxqu and let Ei “ p´1pXiq. We

have the following homeomorphism
Xi – Xi´1

px, ψipxqq Ñ px, ψipxq ´ φipxqq

This induce an isomorphism using the fact that E is trivial on Vi

hi : Ei – Ei´1

6This result can be found in [Hat03], lemma 1.21.
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hipx, ψipxq, vq “

"

id x P XzVi
px, ψi´1pxq, vq x P Vi

Now, using the fact that ψ0 “ 0 and limi ψi “ 1,

h : E0 – lim
i
Ei

h “ h0 ˝ h1 ˝ ¨ ¨ ¨

gives us that
p´1pX ˆ t0uq – p´1pX ˆ t1uq

l 3.1.29

Corollary 3.1.30.
Let X be a paracompact, f, g : X Ñ Y be continuous functions and ξ be a complex vector bundle
on Y. Then:

f „Hom g ñ f˚pξq – g˚pξq

Proof of Corollary 3.1.30:
Let H : X ˆ I Ñ Y be the homotopy between f and g. Then, using lemma 3.1.29 on H˚pξq we
get that

f˚pξq “ ι˚0
`

H˚pξq
˘

– ι˚1
`

H˚pξq
˘

“ g˚pξq

l 3.1.30

Now, we will refocus ourselves on CW complexes. They are by 3.1.14 paracompact, so they
follow all previous properties. Lets now define the following functor.

Definition 3.1.31 (Vector bundle contravariant functor).
Let X,Y P ObpHoCWq, f P rX,Y s. We define the contravariant functor of the n-dimensional
complex vector bundle V bCn :

V bCn : HoCW Ñ Set

V bCnpXq “ Iso tξ| ξ is a n complex vector bundles on X. u

V bCnprf sq “ f˚

f˚pξq “ f˚ξ

Proposition 3.1.32.
V bCn follows W) and MV) axioms as defined here.
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Proof of Proposition 3.1.32:

• W): This comes from the fact that, when considering
Ž

αXα and ξ a complex vector
bundle on it, iαpξq – p´1pXαq and they muss agree on the base point. Thus, we have that

ti˚αu : V bCnp
ł

α

Xαq –
ź

α

V bCnpXαq

• MV): Let A1 YA2 “ X and ξ1 be a bundle on A1, ξ2 be a bundle on A2. Suppose that

Ψ : i˚A2
pξ1q “ p´1

1 pA2q – p´1
2 pA1q “ i˚A1

pξ2q

Then, we can construct the wanted complex vector bundle on X as

E “ E1 YΨ E2

p “ p1 YΨ p2

Further details can be found in [Swi17] 11.32.
l 3.1.32

Corollary 3.1.33.
@n P N˚, there is a unique CW complex (up to homotopy) named BUpnq and a unique complex
vector bundle u (up to isomorphism) on it such that

Tu : r´, BUpnqs – V bCnp´q

Tuprf sq “ rf
˚puqs

We name BUpnq the classifying space and u the universal bundle.

Proof of Corollary 3.1.33:
This is a direct consequence of Brown’s representation theorem on sets 2.2.12. The unicity part
is aconsequence of 2.2.11.

l 3.1.33

Now, we want to show that γn is the universal bundle.

Theorem 3.1.34.
Consider GC

n . Because it is the colimit of manifold, which are CW complexes, it is itself a CW
complex. We also consider γn the tautological bundle on GC

n . Then:

Tγn : r´, GC
ns – V bCnp´q

That is to say, GC
n is the classifying space and γn the universal bundle. Hence, BUpnq „Hom GC

n .
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Proof of Theorem 3.1.34:
Let ξ be a complex vector of dimension n on X with total space E such that ξ – f˚pγnq, with
f : X Ñ GC

n . Then, we have the following commutative diagram:

E f˚pEγnq Eγn C8

X GC
n

u
//

rf
//

π

$$

p

��

pf

��

p

//
f

with π : px, vq Ñ v. Then, we can define

g : E Ñ C8

g “ π ˝ rf ˝ u.

We note that g is a linear injection on each fibers. Inversely, if such a g exists7, then consider

f 1 : X Ñ GC
n

f 1pxq “ gpp´1pxqq

This gives us that
E – f 1˚pEγnq

using px, vq Ñ px, gpp´1pxqq, vq

Furthermore, if g is defined using f , then

f 1pxq “ π ˝ rf ˝ upp´1pxqq

“ π ˝ rfpp´1
f pxqq

“ π ˝ p´1pfpxqq
“ fpxq

Knowing that, let’s show that Tγn is a bijection:

• Surjective: Let ξ be a n dimensional vector bundle on p : E Ñ X. Let tUαu be a trivial
covering of X. Because it is a paracompact, we can furthermore assume that tUiu is
countable8 and that we have a partition of unity tφiu. Let

gi : p´1pUiq Ñ Cn

gi “ p2 ˝ hUi .

7i.e. a map that is liner injection on every fibers.
8This result can be found in [Hat03], lemma 1.21.
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Then, using partition of unity, we extend those maps as

φigi : E Ñ Cn

φipxqgipx, vq “ φipxqv

We use this to define the g map

g : E Ñ pCnq8 “ C8

gpx, vq “
`

φ0pxqg0px, vq, φ1pxqg1px, vq, ¨ ¨ ¨
˘

We see that gpx, vq is a linear injection on every fibres9. Therefore,

ξ – f˚pγnq, with fpxq “ gpp´1pxqq.

• Injective: Let f0, f1 P rX,G
C
ns such that f˚0 pγnq – f˚1 pγnq. Consider g0, g1 : E Ñ C8. We

define the homotopy
Lot : C8 ˆ I Ñ C8

Lot px1, x2, x3, ¨ ¨ ¨ q “ tpx1, x2, x3, ¨ ¨ ¨ q ` p1´ tqpx1, 0, x2, 0, x3, ¨ ¨ ¨ q

and consider g10 “ Lo1 ˝ g0, g11 “ Le1 ˝ g1. We have that

g10 „Hom g0, g
1
1 „Hom g1.

We define
Ht “ tg10 ` p1´ tqg

1
1.

This gives us an homotopy gt between g1 and g2 such that gt is linear and injective on the
fibres.

Then, consider ft “ gtpp
´1pxqq. It is such that

f0 “ f 10 “ ι0 ˝ ft, f1 “ f 11 “ ι1 ˝ ft

l 3.1.34

Corollary 3.1.35.
Let X P ObpCWq and ξ be a n-dimensional complex vector bundle on it. Then

Df : T pξq ÑMUpnq

Proof of Corollary 3.1.35:
Thanks to theorem 3.1.34, Dj : X Ñ GC

n such that ξ – j˚pγnq. Then, it simply suffice to take
f “ T pjq.

l 3.1.35

9That is with x fixed
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3.2 Cobordism

Now that we know why MU is not a standard spectrum, we want to find, thanks to 2.2.24,
which cohomology and homology it defines. Answering this question is the goal of the following
section.
To do so, we will give a description of a structure on manifolds named cobordism and show its
link with MU .

3.2.1 Reminders on manifolds

Before starting definition of cobordism, we remind ourselves of some constructions and properties
of smooth manifolds. On any manifold M , there exists the tangent bundle TM , a real vector
bundle defined as

TM “

!

px, vq PM ˆ Rn| v P TxM
)

Full details on tangent space and bundle can be found in [Kos13], 1.4 and 1.5.
But we can give a manifold another kind of bundle, namely the normal bundle

Definition 3.2.1 (Normal bundles).
Let W be a smooth manifold of dimension m and M be an n dimensional embedded submanifold
of W . Then, we define the normal bundle:

NpM,W q “
!

px, vq PM ˆ TW | v P TxW and vK TxM
)

ppx, vq “ x

The trivial covering is given by the atlas on our manifold W .
We have that NpM,W q is of dimension m´ n.

In case that M is a manifold with boundary, then, we define
NpM,W q “ NpintpMq,W q extended by continuity onto its boundary.

Proposition 3.2.2.

1. The normal bundle is a smooth manifold of dimension m.

2. If W “ Rm, then, using ι : Rm ãÑ Rm`1, we get

NpM,Rm`1q – NpM,Rmq ‘ εRpMq

97



This interesting construction becomes essential in manifold theory using the following 2 theo-
rems.

Theorem 3.2.3 (Whitney embedding Theorem).
Let M be a n dimensional smooth manifold. Then M can be embedded into R2n`1.

Proof in [Bre13], chapter II, 10.08.

Theorem 3.2.4 (Tubular neighbourhood theorem).
Let W be a m dimensional smooth manifold, M a n dimensional embedded compact submanifold.
Then, DT open neighbourhood of M such that

T – NpM,W q

Furthermore, M is the zero section of this diffeomorphism.

Proof in [Bre13], chapter II, 11.04 and 11.14.

There also exists a variant of the tubular neighbourhood for boundary of manifolds, named in
this case collars.

Theorem 3.2.5 (Differential collaring theorem).
Let W be a compact smooth m manifold with boundary. Then, NpBW,W q “ εRpBW q and DT an
open neighbourhood of BW such that

T – BW ˆ Rě0

with BW the zero section of this diffeomorphism.
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Using those theorems, we can define some important operations on manifolds that are powerful
tools when handling manifolds.

Definition 3.2.6 (Smooth product).
Let M,N be smooth manifold with boundary with respective dimension m,n. Then, we define
the smooth product as giving a smooth structure on the M ˆN such that:

• p : M ãÑM ˆN , p : N ãÑM ˆN are embedding.

• BpM ˆNq “ BM ˆN YM ˆ BN .

Definition 3.2.7 (Gluing).
Let V,W be smooth compact n ` 1 manifolds with boundary and M be a n smooth compact
manifold with boundary such that it is embedded into BV and BW . Then, we define the gluing
of V and W alongside M as a smooth structure on V YM W , written

V#MW.

• V#MW is a smooth compact n` 1 manifold with boundary.

• V zM , W zM are smooth submanifolds.

• ι : M ãÑ V#MW is an embedding.

• BpV#MW q “ BV zM
Ů

BW zM .

We also need a theorem of approximation on smooth functions.

Theorem 3.2.8 (Smooth homotopy theorem).

1. Let f : M Ñ N be a continuous function between 2 manifolds. Then,

D rf : M Ñ N a smooth map such that f 1 „Hom f

2. Let H : M ˆ r0, 1s Ñ N be an homotopy between 2 smooth maps f and g. Then,

D rH : M ˆ r0, 1s Ñ N a smooth homotopy between f and g

[Bre13], chapter II, 11.8. and [tD08] 15.8.4.
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3.2.2 Complex cobordism

Now that we have reminded ourselves of important results on manifolds, we can define what
is called complex cobordism. The main issue we have is that manifold with boundary are not
well defined for complex manifold. To solve this problem, we define the following structure on
smooth manifolds.

Definition 3.2.9 (Stably complex manifolds).
Let M be a smooth k manifold. We say that M is stably complex if for some n P N, there
exists an isomorphism such that

NpM,R2n`kq – ξ

with ξ a n complex vector bundle. We usually note this pM, ξq.
In case M has a boundary, we say it is stably complex if intpMq is.

Remark 3.2.10.

1. Every complex manifolds of dimension n, seen as 2n real manifold, are stably complex.

2. If NpM,R2n`kq is complex, then NpM,R2pn`1q`kq “ NpM,R2n`kq ‘ ε2R – ξ ‘ εC

3. Because for any manifold M , TM ‘NpM,R2n`kq – ε2n`kR pMq, we get that we can give
for some u TM ‘ εuRpMq a complex structure.

We can now define complex bordism.

Definition 3.2.11 (Unitary cobordism).
Let X P ObpCWq. Let pM, ξM q, pN, ξN q be n compact stably complex smooth manifolds,
f : M` Ñ X, g : N` Ñ X. We say that pM, ξM , fq is unitary cobordant to pN, ξN , gq
if there exists pW, ξW , F q with W a n ` 1 compact stably complex manifold with boundary em-
bedded in R2w`n`1 and F : W` Ñ X such that:

1. BW “M \N

2. F |M “ f, F |N “ g

3. NpM,R2w`n`1q – ι˚M pξW q‘˘εR – ξM‘ε
u
C‘˘εR with εR given by the induced orientation

on BW .

4. NpN,R2w`n`1q – ι˚N pξW q ‘ ¯εR – ξN ‘ εvC ‘ ¯εR with εR also given by the induced
orientation on BW .
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In 3. and 4., the isomorphisms are such that @x P M or N, ϕ|p´1pxq P Gl
`
2w`1pRq. The εuC are

used to make sure that dimension agrees.

Unitary cobordism is an equivalence relation, written „Cob.

Verification of Definition 3.2.11:

1. identity: For pM, ξ, fq with NpM,R2n`kq – ξ, consider M ˆ r0, 1s with F px, tq “ fpxq.
We have to show that M ˆ r0, 1s is stably complex and that vector bundles agree. This
comes from that M ˆ p0, 1q –M ˆ R. Then, we see that

NpM ˆ R,R2n`k`1q – NpM,R2n`kq ˆ R – ξ ˆ R

This is an abuse of notation but we see it is is a complex vector bundle.

We have that
N
`

M ˆ t0u,R2n`k`1
˘

– NpM,R2n`kq ‘ εR – ξ ‘ εR

and it is well oriented. Similarly,

N
`

M ˆ t1u,R2n`k`1
˘

– NpM,R2n`kq ‘ ´εR – ξ ‘´εR.

Thus, using pM ˆ r0, 1s, F q, we get pM, ξ, fq „Cob pM, ξ, fq

2. reflexivity: By definition.

3. Associativity: Let pW1, ξ1, F1q be the cobordism between pM, ξM , fq and pN, ξN , gq, pW2, ξ2, F2q

be the cobordism between pP, ξP , hq and pN, ξN , gq. Then, consider

W1#NW2

F “ F1 YN F2.

This gives us the wanted bordism, but we still need to show that W1#NW2 is stably
complex. For intpW1#NW2q “ 9W1 \ 9W2 \N . Using 3.2.5, there exists Y “ Y1 YN Y2 an
open of W1#NW2 such that Y – NpN,W1q – NpN,W2q. Then, using the fact that

N
`

NpN,W q,Ru
˘

– ι˚NNpW,Ruq

We see that Dn P N

NpintpW1#NW2q,R2n`k`1q “ Np 9W1,R2n`k`1q YNp 9W2,R2n`k`1q YNpY,R2n`k`1q

which has a complex structure because union of complex vector bundle that are the same
on their intersection. The fact that boundary conditions are respected comes from the fact
that we have not changed in a substantive way the boundary (at worst, we have added an
even number of trivial bundles). Thus, we get that

pM, ξM , fq „Cob pP, ξP , fq

l 3.2.11
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Figure 3.1: Cobordism W between M “ S2
R and N “ pS1

R ˆ S
1
Rq [Bar09].

Having this equivalence relation, we use it to construct the complex bordism group.

Definition 3.2.12 (Unitary bordism group).
Let X P ObpCWq. We define the n unitary bordism group on X as

ΩU
n pXq “

!

pM, ξM , fq|M compact stably complex n-manifold , f : M` Ñ X
)

{„Cob

rM, ξM , f s ` rN, ξN , gs “ rM \N, ξM \ ξN , f \ gs.

Thanks to Whitney theorem 3.2.3, this is a set10. In fact, ΩU
n pXq is an abelian group.

From now on, we will drop writing ξM in pM, ξM , fq when it is clear from context.

Verification of Definition 3.2.12:
To show that the addition is well defined, consider pWM , F q a cobordism between pM1, f1q and
pM2, f2q, pWN , Gq a cobordism between pN1, g1q and pN2, g2q. Then,

pWM \WN , F \Gq is the cobordism between pM1 \N1, f1 \ g1q and pM2 \N2, f2 \ g2q

Every other axioms of group is quite easy to show. If the associativity and commutativity are
trivial, We can find the zero by considering 0 “ rØ,Ø, f : ˚ Ñ Xs. The inverse is a bit more
tricky. For rM, ξM , f s with ξ n dimensional, we define rM, ξM , f s with ξM given by

ι˚U pξM q – U ˆ Cn´1 ˆ C11

Then, the cobordism pM ˆ r0, 1s, ξˆ, F q as defined in proof of 3.2.11 is such that us that

NpM ˆ t1u,R2n`k`1q – ξM ‘˘εR – ξM ‘¯εR

10Indeed, we have that the set of all n-manifold can be seen as a subset of PpR2n`1
q.

11Using complex conjugate x` iy “ x´ iy.
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Thus, pM ˆ r0, 1s, ξˆ, F q can be seen as a cobordism between pM \M, ξM \ ξM , f \ fq and
rØ,Ø, f : ˚ Ñ Xs “ 0. So rM, ξM , f s is the inverse of rM, ξM , f s.

l 3.2.12

Definition 3.2.13.
We can in fact see ΩU

n pXq as a functor:

ΩU
n : CW Ñ Ab

with ΩU
n pfq : ΩU

n pXq Ñ ΩU
n pY q

ΩU
n pfq

`

rM, ξM , gs
˘

“ rM, ξM , f ˝ gs

Proposition 3.2.14.
If f „Hom g, Then ΩU

n pfq “ ΩU
n pgq

Proof of Proposition 3.2.14:
Let h : X ˆ r0, 1s Ñ Y be the homotopy between f and g. Then, @rM, ξM , φs P ΩU

n pXq, we get
that

rM, ξM , f ˝ φs “ rM, ξM , g ˝ φs

For that, we use the cobordism

´

M ˆ r0, 1s, ξˆ, hpφpxq, tq
¯

and using ξˆ, same complex vector bundle as before. l 3.2.14

Theorem 3.2.15.
Let

ΩU
n : HoCW Ñ Ab

Then, ΩU
n is an unreduced homology theory that follows the wedge and the WHE axiom as defined

in 1.3.2.

The following paper [Hop16] is a proof this theorem.
Now that we have an homotopy theory, we want to find the spectra it is equivalent to.
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3.2.3 Thom-Pontrjagin cobordism isomorphism

Here is a small result that will help us simplify the structure of bordism.

Proposition 3.2.16.
Let pW,F q be a cobordism between pM,fq and pN, gq, both beeing embedded in R2n`k. Then, we
can consider W as embedded into R2n`kˆr0, 1s with WXR2n`kˆt0u “M , WXR2n`kˆt1u “ N .

Proof of Proposition 3.2.16:
Because manifolds are metric spaces, we can use Urysohn lemma on the closed sets M and N.
Thus, we get

α : W Ñ r0, 1s

αpMq “ 0, αpNq “ 1 and α continuous

Then, using smooth approximation theorem, we can assume that α is a smooth map. Now,
because 0 and 1 are regular points, we get an open neighbourhood around 0 and 1. Now,
consider t1 the smallest singular value and t2 the biggest singular value. Consider

W 1 “ α´1
`

r0, t1q \ pt2, 1s
˘

This is a k ` 1 submanifold with boundary BW . Then, because W is stably complex, then

NpW 1,R2n`k`1q – ι˚NpW,R2n`k`1q – ι˚ξ

and is thus stably complex and preserve boundary conditions. Then, we have that pW 1, F |W 1q

is still a bordism. Furthermore, we define an embedding

f : W 1 ãÑ R2n`k ˆ r0, 1s

fpxq “ pιαpxq, αpxqq

with ια the embedding on α´1ptq.
l 3.2.16

Remark 3.2.17.
We consider

ΩU
n,kpXq “ tpM,fq| M Ă R2n`k, f : M` Ñ Xu{„Cob

with pM,fq „Cob pN, gq if DW a cobordism with W Ă R2n`k ˆ r0, 1s.
We can see that ΩU

n,kpXq is an abelian group and furthermore, we have that

ΩU
k pXq “ colimn ΩU

n,kpXq

with injection given by embedding i : R2n`k ãÑ R2pn`1q`k.
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Now, we define the cornerstone of this subsection.

Definition 3.2.18 (Thom-Pontrjagin construction).
Let M be a compact stable complex manifold. Consider T given by tubular neighbourhood 3.2.4.
We have ϕ : T – NpM,R2n`kq – ξ. Then, seeing ξ as int

`

Dpξq
˘

, we extend this function onto
R2n`k by sending everything not in T on the sphere bundle. Using Thom space, we get

ϕ : S2n`k Ñ T pξq

But then, using 3.1.35, we get what is called the Thom-Pontrjagin construction:

ΦM : S2n`k ϕ
ÝÝÑ T pξq

T pjq
ÝÝÝÑMUpnq

Thom-Pontrjagin construction has some very good properties.

Proposition 3.2.19.

1. This map is unique up to homotopy for a given M .

2. If we consider ξ – NpM,R2n`kq, then the Thom-Pontrjagin construction given on
NpM,R2pn`1q`kq is simply Σ2ΦM .

3. If pM,fq „Cob pN, gq, then ΦM „Hom ΦN .

Proof of Proposition 3.2.19:

1. First, on the choice of T , we have that they are all diffeomorphic to each others. Consider
T1, T2 two tubular neighborhood and let H : NpM,R2n`kq ˆ r0, 1s ÑM be the homotopy
equivalence by retraction on the zero section. Then, consider the following map.

∆px, tq “

"

ϕ1 ˝Hpϕ
´1
1 pxq, 2tq 0 ď t ď 1

2

ϕ2 ˝Hpϕ
´1
1 pxq, 2t´ 1q 1

2 ď t ď 1

and Et “ ∆pY1, tq. Then, consider

pt : Et ãÑ NpN,R2n`kq

pt “

"

ϕ1 0 ď t ď 1
2

ϕ2
1
2 ď t ď 1

Then, by extending pt to all R2n`k, we get the homotopy between ϕ1 and ϕ2

Now, for the second part, it is a consequence of 3.1.34. j is unique on homotopy and thus
so does T pjq.
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2. We have that NpM,R2pn`1q`kq – NpM,R2n`kq ‘ ε2RpXq. Thus, if T is the tubular neigh-
bourhood of NpM,R2n`kq, then T 1 “ TˆR2 is a tubular neighbourhood of NpM,R2pn`1q`kq.
Thus ϕ1 “ ϕ^ idS2 . Therefore, the Thom-Pontrjagin construction gives us

S2pn`1q`k ϕ^idS2
ÝÝÝÝÝÑ T pξ ‘ εCq “ T pξq ^ S2

R
T pjq^idS2
ÝÝÝÝÝÝÝÑMUpnq ^ S2

R

And this just Σ2ΦM

3. Let W Ă R2n`kˆr0, 1s be a cobordism between M and N given by 3.2.16. Then, we apply
the Thom-Pontrjagin construction on W 12, extended on M and N gives us a map

ΦW : S2n`k ˆ r0, 1s ÑMUpnq

With ΦW ˝ i0 “ ΦM and ΦW ˝ i1 “ ΦN . That is to say, we have

ΦM „Hom ΦN .

l 3.2.19

The Thom-Pontrjagin gives us therefore a morphism.

Definition 3.2.20 (Thom-Pontrjagin morphism).
Let X P ObpHoCWq, Then, we define the Thom-Pontrjagin morphism:

Φ : ΩU
n,kpXq Ñ π2n`kpX

` ^MUpnqq

rM,f s Ñ rΦM s

Verification of Definition 3.2.20:
This is indeed a group morphism because

µpf, gq˚pγnq – f˚pγnq \ g
˚pγnq

With µ as defined on 1.2.6. Then,

ΦM\N : S2n`k µpϕ1,ϕ2q
ÝÝÝÝÝÝÑ T pξ1q \ T pξ2q

T pj1q\T pj2q
ÝÝÝÝÝÝÝÝÑMUpnq

which is just µpΦM ,ΦN q.
Furthermore, ΦØ : S2n`k Ñ ˚ is the 0 of π2n`kpX ^MUpnqq.

l 3.2.20

In fact, this morphism can be naturally extended into a natural homology transformation

12To be exact, we define it on Wt with t P p0, 1q fixed and take the union of the tubular neighbourhoods.
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Definition 3.2.21 (Thom-Pontrjagin transformation).
Let X P ObpHoCWq. Then, we define the Thom-Pontrjagin transformation:

Φ : ΩU
k pXq Ñ πkpX

` ^MUq

rM,f s Ñ rΣ´2nΣ8S2n`k,Σ´2nΣ8ΦM s

seeing Σ´2nΣ8S2n`k as a cofinal subspectrum of ΣkS.

To go further on this natural transformation, we need to do a small detour on the notion of
transversality.

Definition 3.2.22 (Transversal maps).
Let f : M Ñ N , g : V Ñ N be smooth maps. We say that f is transversal to g if whenever
fppq “ gpqq

DfpTpMq `DgpTqV q “ TfppqN

with Df the smooth pushforward. We note transversality as f&g.

Proposition 3.2.23.
Let f : M Ñ N , g : V Ñ N , f&g. Then f´1

`

gpV q
˘

is a regular submanifold of M .

proof given by [Kos13] in chapter IV, 1.4.

Theorem 3.2.24 (Thom approximation theorem).
Let f : M Ñ N, g : V Ñ N be two smooth maps.

D rf : M Ñ N, rf „Hom f, rf&g

proof given by [Kos13] in chapter IV, 2.5.

Now, equip with this theorem, we can prove the Thom-Pontrjagin isomorphism.
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Theorem 3.2.25 (Thom-Pontrjagin isomorphism).

Φ : ΩU
k,np˚q – π2n`kpMUpnq ^ S0q

Proof of Theorem 3.2.25:
First, π2n`kpMUpnq ^ S0q “ π2n`kpMUpnqq.
In this proof, we will use two small observations. First, we have that γn “ colimkγn,k. This
insure that MUpnq can be considered as

MUpnq “ colimkT pγn,kq

with injection given by T pikq : T pγn,kq ãÑ T pγn,k`1q.

Furthermore, let’s consider γn,k. We can give its total space
!

px, vq P GC
n,k ˆ Cn`k| v P x

)

the

structure of a kpn ` 1q complex manifold13. Indeed, it is locally equivalent to U ˆ Cn with U
open subset of GC

n,k and thus also a manifold.

Now, let’s show Φ is an isomorphism.

• surjective: Let f : S2n`k Ñ MUpnq. Then, using 2.2.21, we get that f is defined by a
map

f : S2n`k Ñ T pγn,jq.

Because GC
n,j is compact, 3.1.26 gives us that T pγn,jq is just the one point compactification

of its total space E. We therefore consider the map

f |f´1pEq : U Ñ Eγn,j

with U Ă R2n`k. It is thus a stably complex manifold. Then, using 3.2.8, we get f : U Ñ
Eγn,j a smooth map such that

f „Hom f

Using 3.2.24, we finally get
rf : U Ñ Eγn,j

rf & GC
n,j

rf „Hom f

Now, consider M “ f´1pGC
n,jq. By 3.2.23, M is an embedded manifold in R2n`k.

13So it is a 2kpn` 1q stably complex manifold
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By thinking a bit at NpGC
n,j , Eγn,j q, we see that it is just γn,j by the structure of the

manifold Eγn,j . Furthermore, by 3.2.4, GC
n,j has a tubular neighbourhood and it is just

Eγn,j .

Using this, we get that:

1.
NpM,R2n`kq “ NpM,Uq – f˚NpGC

n,j , Eγn,j q – f˚γn,j .

Thus, M is stably complex.

2. U “ f´1pEγn,j q is a tubular neighbourhood for M “ f´1pGC
n,jq.

Now, if we consider ΦM , we get that

S2n`k T
`

NpM,R2n`kq
˘

MUpnq//ϕ //
T pi ˝ rfq ''

f

Thus, ΦM „Hom f .

• injectivity : Let H : S2n`kˆr0, 1s ÑMUpnq be an homotopy between ΦM and ΦN . Then,
using a similar reasoning than for surjectivity, we get a smooth map

rH : U ˆ r0, 1s Ñ Eγn,j

rH & GC
n,j

Then, W “ rH´1pGC
n,jq gives us a bordism between M and N . Furthermore,

Np 9W,R2n`k`1q – rH˚NpGC
n,j , Eγn,j q “

rH˚γn,j

Thus, W is stably complex.

l 3.2.25

Corollary 3.2.26 (Thom-Pontrjagin equivalence).

Φ : ΩU
k pXq – πkpX

` ^MUq

i.e., we have found a representation of the unreduced homology induced by MU .
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Proof of Corollary 3.2.26:
We are working with unreduced cohomology. Due to the duality between reduced and unreduced
showed in 1.3.7, we see that 1.4.24 can be applied in the unreduced case. It thus suffice to show

Φ : ΩU
k p˚q – πkpS

0 ^MUq

To get this result, we see that πkpS
0 ^MUq “ πkpMUq and using previous theorem 3.2.25, we

get

ΩU
k p˚q πkpMUq

colimn ΩU
k,np˚q colimn π2n`kpMUpnqq

//Φ

α

Φ

l 3.2.26

It is interesting to note that the computation of MU˚p´q we have found is quite geometric,
because it study manifolds.
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Chapter 4

Multiplicative Structures

Now that we have a good grasp of MU , we want to find some of its properties. It occurs
that MU is closely linked to notions of orientation. To study it in details, we will work on
ring spectrum and on complex orientation. After this, we will use all of our previous work to
compute cohomology of MU .

4.1 Ring Spectrum

4.1.1 Ring spectrum and multiplicative cohomology

We have seen in the chapter 2 that spectra and cohomology where equivalent notions (up to
homotopy). We know that we can give some cohomology (like H˚p´, Rq with R a ring) a
multiplicative structure. Then, a good question is what structures on spectra can be used to
represent this multiplicity. An answer is the notion of ring spectrum, but before this, we need
to define the notion of smash product on Sp.

Definition 4.1.1 (Smash product of spectra).
Let E,F P ObpSpq. We define the smash product of spectra E ^ F as

pE ^ F q2n “ En ^ Fn

pE ^ F q2n`1 “ En ^ Fn ^ S
1

p2n “ idEn^Fn^S1

p2n`1 “ pEn ^ p
F
n

Smash product of spectra has many good properties.
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Proposition 4.1.2.
Let E,F P ObpSpq:

1. Subspectra of E^F of the form E^F , with E cofinal in E and F cofinal in F are cofinal
in E ^ F .

2. E ^ F is isomorphic to ČE ^ F :

ČE ^ F 2n “ En ^ Fn

ČE ^ F 2n`1 “ En`1 ^ Fn

3. Let X P ObpCWq. Then

pE ^ F q ^X “ pE ^Xq ^ F “ E ^ pF ^Xq

4. @m P Z
ΣmpE ^ F q „Hom ΣiE ^ ΣjF with i` j “ m

5. @E P ObpSpq
E ^ S – E

6. Smash product is associative but only commutative up to isomorphism1.

Proof of Proposition 4.1.2:

1. Let E ^ F be a subspectrum of E ^ F . Let e P En ^ Fn. Due to the structure of smash
product on CW complexes 1.4.6, we get that e “ e1 ^ e2 with e1 P En, e2 P Fn. Then, Dm
such that

Σ12me “ Σ1me1 ^ Σ1me2 P En`m ^ Fn`m “ pE ^ F q2pn`mq.

2. To see that E ^ F – ČE ^ F , we consider the following commutative diagram:

En ^ Fn En ^ Fn ^ S
1 En`1 ^ Fn`1 ¨ ¨ ¨¨ ¨ ¨

En ^ Fn En`1 ^ Fn En`1 ^ Fn`1 ¨ ¨ ¨¨ ¨ ¨

// //
id

//
pEn ^ p

F
n //

// //
pEn ^ id //

id^ pFn //
��

id

��

pEn ^ id

��

id

1In fact, the question of a good (that would be associative) smash product on spectra is a very rich one. We
here only give and work on a naive definition but further work on the topic has been done and can be found in
[AA74], part IV and in [Swi17], chapter 13.
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This imply that we can define the spectral function

p : E ^ F ãÑ ČE ^ F

p2n “ id, p2n`1 “ pEn ^ idFn

This induce that E ^ F – E ^ F 2 with

E ^ F 2n “ En ^ Fn

E ^ F 2n`1 “ Σ1En ^ Fn

Then, we see that E ^ F is cofinal in ČE ^ F . So they are isomorphic.

3. By definition.

4. Consider i, j P N, i` j “ m. Then,

ΣiE ^ ΣjF „Hom E ^ F ^ Si ^ Sj – E ^ F ^ Sm „Hom ΣmpE ^ F q

Now, fix i ă 0, j ě 0 we have

Σ´ipΣiE ^ ΣjF q „Hom ΣiE ^ ΣjF ^ S´i „Hom E ^ ΣjF „Hom ΣjpE ^ F q

Using the fact that Σ is a natural bijection on HoSp, we get that

ΣiE ^ ΣjF „Hom Σi`jpE ^ F q

If both i and j are negative, we have

Σ´i´jpΣiE ^ ΣjF q „Hom ΣiE ^ ΣjF ^ S´i ^ S´j „Hom E ^ F

Thus, similarly to before, ΣiE ^ ΣjF – Σi`jpE ^ F q.

5. Consider the following diagram

En ^ S
n En ^ S

n`1 En`1 ^ S
n`1 ¨ ¨ ¨¨ ¨ ¨

E2n E2n`1 E2pn`1q ¨ ¨ ¨¨ ¨ ¨

// //
id

//
pEnΣ^ id

//

// //
p2nΣ

//
p2n`1Σ

//
��

pn

��

p2n ˝ Σpn

��

pn`1

with pn “ p2n´1 ˝ Σp2pn´1q ˝ ¨ ¨ ¨ ˝ Σn´1pn

This gives us an isomorphism between E ^ S and Σ1E with

pΣ1Eqn`1 “ Σ1En, n ě 0

This is a cofinal subspectrum of E. Hence, we have that E ^ S – E.

2Cellular maps are by definition open and thus have, when bijective, continuous inverses
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6. Commutativity is by definition. Associativity is can be seen by

pE ^ F q ^G – pE ^ F q ^ pG^ Sq “ pF ^Gq ^ pE ^ Sq – E ^ pF ^Gq

l 4.1.2

Example 4.1.3.

• Let U be as in 2.1.2, Then, U ^ E is of the form

pU ^ Eq2n “
8
ł

i“0

ΣiEn

pU ^ Eq2n`1 “

8
ł

i“1

ΣiEn

• From previous example, we get

pU ^ Uq2n “
8
ł

i“0

i`1
ł

j“0

Si

pU ^ Uq2n`1 “

8
ł

i“0

i
ł

j“0

Si

With our smash product for spectra, we muss also define smash product for spectral maps.

Definition 4.1.4 (Smash product of spectral maps).
Let E,F,H,K P ObpSpq, f “ rĒ, f s P SppE,Hq, g “ rF̄ , gs P SppF,Kq. We define the smash
product of f and g:

f ^ g : E ^ F Ñ H ^K

rE ^ F , hs

h given as follows.

En ^ Fn En ^ Fn ^ S
1 En`1 ^ Fn`1 ¨ ¨ ¨¨ ¨ ¨

Hn ^Kn Hn ^Kn ^ S
1 Hn`1 ^Kn`1 ¨ ¨ ¨¨ ¨ ¨

// //
ι

//
pEn ^ p

F
n //

// //
ι

//pHn ^ p
K
n //

��

fn ^ gn

��

fn ^ gn ^ idS1

��

fn`1 ^ gn`1
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Unsurprisingly, map create using the smash product behave well under homotopy.

Proposition 4.1.5. Let f, g P SppE,Hq, h, k P SppF,Kq. If f „Hom g, h „Hom k. Then

f ^ h „Hom g ^ k

In particular, if rf s “ 0, then rf ^ hs “ 0

Proof of Proposition 4.1.5:
Let W : E ^ I` Ñ H be the homotopy between f and g. Then,

W ^ h : E ^ I` ^ F Ñ H ^K

Gives us the homotopy between f ^ h and g ^ h.
Now, because 0 “ r˚s the base point map, we get that ˚^h “ ˚ by definition of smash product.

l 4.1.5

Using this, we can, like for 2.1.47, extend the notion of homotopy to Sp.

Definition 4.1.6 (Homology of spectra).
Let E,R P ObpSpq. We define the E-homology of the spectrum R as

EkpRq “ rΣ
kS, R^ Es “ πkpR^ Eq “ colimn πk`2npEn ^Rnq

Note that it can be shown that smash product on spectra preserve cofibre sequence as defined in

2.1.40. Thus, if G
f
ÝÑ H

g
ÝÑ K is a cofibre sequence, then so does E ^ G

idE^f
ÝÝÝÝÑ E ^H

idE^g
ÝÝÝÝÑ

E ^K and, using 2.1.44,

EkpGq
pidE^fq˚
ÝÝÝÝÝÝÑ EkpHq

pidE^gq˚
ÝÝÝÝÝÝÑ EkpKq
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Now that we have a spectral smash product, we can give a proper definition of ring spectra.

Definition 4.1.7 (Ring spectrum).
Let E P ObpSpq, m : E ^ E Ñ E and η : SÑ E such that:

1. The following diagram commute up to homotopy:

E ^ E ^ E E ^ E

E ^ E E

//
idE ^m

��

m

��

m^ idE

//
m

2. The following diagram commute up to homotopy:

S^ E E ^ E E ^ S

E

//
η ^ idE

��

m

oo
idE ^ η

We name pE,m, ηq a ring spectrum.3

Furthermore, if m „Hom m ˝ T with T the map that switch element, then we say that pE,m, ηq
is a commutative ring spectrum.

Example 4.1.8.

1. Let E “ S, m : S^ SÑ S be induced by mi,j : Si ^ Sj – Si`j and η “ idS. Then,

pS,m, ηq is a commutative ring spectrum.

2. Consider the following maps

mi,j : GC
i,k1 ˆG

C
j,k2 ãÑ GC

i`j,k1`k2

mi,jpx, yq “ x‘ y

3We see that those diagram are the same that for ring in Ab.
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Thoses maps induced the following structure on the tautological bundle

m˚i,jpγi`j,k1`k2q “ γi,k1 ˆ γj,k2

This extend to the universal bundle

m˚i,jpγi`jq “ γi ˆ γj

Thus, we get T pmi,jq : MUpiq ^MUpjq ãÑMUpi` jq

Furthermore, we have that mi,j is stable with the suspensions maps of MU . It therefore
extend to a spectral map

m : MU ^MU ÑMU

For η, because BUp0q “ ˚,MUp0q “ S0, consider

η : SÑMU

η “ rS,Σ8idS0s

pMU,m, ηq is a commutative ring spectrum.

Now that we know ring spectrum, let’s define multiplicative cohomology and see the link between
thoses two notions.

Definition 4.1.9 (Multiplicative cohomology).
Let tE˚, σ˚u be a reduced cohomology. We say that it is a multiplication cohomology if there
exists a natural transformation for all i, j P Z

µi,jpX,Y q : EipXq b EjpY q Ñ Ei`jpX ^ Y q

1 P E0pS0q

satisfying the following axioms:

1. µi,jpσ
i`1 b idq “ σi`j`1 ˝ µi`1,j

Ei`1pΣXq b EjpY q Ei`j`1pΣX ^ Y q

EipXq b EjpY q Ei`jpX ^ Y q

//
µi`1,j

��

σi`j`1

��

σi`1 b id

//
µi,j
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2. µi,jpidb σ
j`1q “ σi`j`1 ˝ µi,j`1

EipXq b Ej`1pΣY q Ei`j`1pX ^ ΣY q

EipXq b EjpY q Ei`jpX ^ Y q

//
µi,j`1

��

σi`j`1

��

idb σj`1

//
µi,j

3. µ ˝ pµb idq “ µ ˝ pidb µq

4. µp1b xq “ µpxb 1q “ x,@x P EnpXq

Furthermore, if µ is commutative, we say that H˚p´q is a commutative cohomology.

Definition 4.1.10 (Cohomology ring).
Let tE˚u be a multiplicative cohomology. Consider

E‚pXq “
à

iPZ
EipXq

Equipped with cup product induced by multiplicative structure and diagonal map:

!: EipXq b EjpXq
µi,j
ÝÝÑ Ei`jpX ^Xq

∆˚
ÝÝÑ Ei`jpXq

We get that pH‚pXq,`, ˚,!, 1q is a graded ring. We name E‚pXq the cohomology ring of X.

Theorem 4.1.11.
Let pE,m, ηq be a ring spectrum.This induce on the cohomology E˚p´q a multiplicative structure.

Proof of Theorem 4.1.11:
We construct our multiplication using the fact that EnpXq “ rΣ8X,ΣnEs, we consider
f P EipXq, g P EjpY q.

µi,jpX,Y q : rΣ8X,ΣiEs b rΣ8Y,ΣjEs Ñ rΣ8pX ^ Y q,Σi`jEs

µi,jpX,Y qpf, gq “ Σi`jmpf ^ gq.

Using Σi`jm : ΣiE ^ ΣjE „Hom Σi`jpE ^ Eq Ñ Σi`jE.
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We also define 1 “ rηs P E0pS0q “ rS, Es.
To understand why µ satisfy the first two point, we see using 2.1.45, that σipfq “ Σ´1f . Then

µi,j ˝ pσ
i`1 b idqpf b gq “ Σi`jmpΣ´1f ^ gq

“ Σi`jm
`

Σ´1pf ^ gq
˘

“ Σ´1Σi`j`1m
`

f ^ g
˘

“ σi`j`1 ˝ µi`1,jpf b gq

This goes similarly in the other case.
Now, the following diagram commute up to homotopy

ΣiE ^ ΣjE ^ ΣkE ΣiE ^ Σj`kE

Σi`jE ^ ΣkE Σi`j`kE

//
idΣiE ^ Σj`km

��

Σi`j`km

��

Σi`jm^ idΣkE

//
Σi`j`km

Therefore,
µpµb idΣkEqpf, g, hq “ µ

`

Σi`jmpf ^ gq, h
˘

“ Σi`j`km
`

Σi`jmpf ^ gq ^ h
˘

„Hom Σi`j`km
`

f ^ Σj`kmpg ^ hq
˘

“ µ
`

f ^ Σj`kmpg ^ hq
˘

“ µpidΣiE b µqpf, g, hq

Giving us our first equality. The second equality comes from

µp1b xq “ mpη ^ idΣjEqpxq “ x “ mpidΣiE ^ ηqpxq “ µpxb 1q

Furthermore, we see that if E is a commutative ring spectrum, we get that µ is commutative.
l 4.1.11

Let’s now try to prove that multiplicative cohomology Ñ ring spectrum. Sadly, it isn’t as easy
and we can only show here this weaker result.

Theorem 4.1.12.
Let pE˚p´q, µ, 1q be a multiplicative cohomology. Furthermore, let

1
lim
n
En´1pEnq “

1
lim
2n
E2n´1pEn ^ Enq “

1
lim
4n
E4n´1

`

E2n ^ pEn ^ Enq
˘

“ 0

with lim1 as defined here.
Then, we can give the spectrum E a ring spectrum structure.
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Proof of Theorem 4.1.12:
wlog, we may assume that E P ObpΩSpq with trivial injections. Using

µi,jpX,Y q : rX,Eis b rY,Ejs Ñ rX ^ Y,Ei`js

We define η “ rΣ81s. For m : E ^ E Ñ E, we use

m2n “ µn,n

´

ridEnsridEns
¯

m2n`1 “ Σm2n

We have to see if those maps agree with each others.
σn is given by the following diagram:

rX,Ens rΣX,ΣEns

rX,ΩEn`1s rΣX,En`1s

//Σ

pp1n`kq˚

��

ppn`kq˚

A

em

σn`1

and we have this other diagram

rΣEn, En`1s b rΣEn, En`1s rΣ2pEn ^ Enq, E2pn`1qs

rEn, Ens b rEn, Ens rEn ^ En, E2ns

rEn`1, En`1s b rEn`1, En`1s rEn`1 ^ En`1, E2pn`1qs

//
µn`1,n`1

��

σ2n`1 ˝ σ2pn`1q

��

σn`1 b σn`1

//
µn,n

��

ι˚ b ι˚

��

ι˚

//
µn`1,n`1

This gives us, seeing rm2pn`1q|ΣEn^ΣEns “ rµn`1,n`1pΣidEn ‘ ΣidEnqs that

m2pn`1q|ΣEn^ΣEn „Hom Σ2m2n

Thus, similarly to what we did in the proof of 2.2.18 and in 2.2.17, we can transform tmnu into
a spectral map.

m : E ^ E Ñ E

Furthermore, using 2.2.17, we have that m is unique up to homotopy. 4

Now, we have to show that pE,m, ηq is a ring spectrum. This comes from the fact that

4Meaning that if g : E ^ E Ñ E with gn „Hom mn for n P N, then g „Hom m.
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´

mpidE ^mq
¯

4n
„Hom µ2n,2n

´

idE2n b µn,npidEn b idEnq
¯

„Hom µ2n,2n

´

µn,npidEn b idEnq b idE2n

¯

„Hom pmpm^ idEqq4n

And thus, using
´

mpidE ^mq
¯

4n`i
“ Σi

´

mpidE ^mq
¯

4n
with 0 ď i ď 3, we get that @nP Z

´

mpidE ^mq
¯

n
„Hom

´

mpm^ idEq
¯

n

Now, using cofinality, we can forget everything bellow 0 in E ^ E ^ E and use 2.2.17. Because
lim1

4nE
4n´1

`

E2n ^ pEn ^ Enq
˘

“ 0, we get that

mpidE ^mq „Hom mpm^ idEq

Similarly,
mpidE ^ ηq2n „Hom µn,npidEn b 1q

„Hom idE2n

„Hom mpη ^ idEq2n

Thus,@n P Z,mpidE ^ ηqn „Hom idEn „Hom mpidE ^ ηqn

Therefore, because lim1
nE

2n´1pEn ^ S
nq “ lim1

nE
n´1pEnq “ 0, using 2.2.17, we get that

mpη ^ idEq „Hom idE „Hom mpidE ^ ηq.

Similarly, if µ is commutative, then pm ˝ T qn „Hom m and by using 2.2.17, m ˝ T „Hom m,
meaning that E is a commutative.

l 4.1.11

From this proof, it appears that Brown’s representation on multiplicative cohomology is far
harder than what it appear at first glance and is in fact a very deep question. Further work on
this subject can be fund in [AA74].
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4.1.2 Thom isomorphism and orientation on ring spectrum

Now that we have a good grasp of ring spectrum and thus of multiplicative structure, we will
study a very important property of MU spectrum, the complex orientation 4.1.23, a property
that simplifies computation of cohomology via what is called Thom-Dolt isomorphism 4.1.15
and gives further structure to spectra.

Definition 4.1.13 (Thom class).
Let ξ be a complex n dimensional vector bundle on X P ObpCWq and E be a ring spectrum.
For every b P X, the inclusion map ιb : b ãÑ X induce a map

T pιbq : S2n “ T pεnCpbqq Ñ T pξq.

We name a Thom class an element u P E2n
`

T pξq
˘

such that @b P X, T pιbq
˚puq is a generator

of E2npS2nq. That is to say
T pιxq

˚puq “ εδn

with ε P E0pS0q is unit, seeing pE0pS0q, µ, 1q as a ring.
δn “ σp1q P EnpSnq using σ : E0pS0q – EnpSnq.

If such a Thom class exists, we say that ξ is E-orientable. 5

A good question is how orientable vector behave with standard tools of vectors bundles.

Proposition 4.1.14.

• Let E be a ring module and ξ be a E-orientable n dimensional vector bundle on Y P

ObpCWq with Thom class u. Let f P CWpX,Y q. Then, f˚pξq is E-orientable.

• Let E be a ring module, ξ1 be a E-orientable n1 dimensional vector bundle on X with
Thom class u1 and ξ2 be a E-orientable n2 dimensional vector bundle on Y with Thom
class u2. Then, ξ1 ˆ ξ2 is also E-orientable.

5We name it orientable because this can in a way be seen as an extension of how we define orientation on
manifold using tangent bundle [Gre18] 22.1.
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Proof of Proposition 4.1.14:

• Using the Thomification T pfq : T
`

f˚pξq
˘

Ñ T pξq. This gives us a map

E2npT pξqq
T pfq˚
ÝÝÝÝÑ E2n

`

T pf˚pξqq
˘

Consider T pfq˚puq. We will show that it is a Thom class. To do so, we need the following
commutative diagram:

S2n
R

T
`

f˚pξq
˘

T pξq

44T pιbq

��

T pfq

**

T pιfpbqq

Thus, @b P X

T pιbq
˚ ˝ T pfq˚puq “

`

T pf ˝ ιbq
˘˚
puq “ T pιfpbqq

˚puq “ εδn.

• Using the fact that T pξ1 ˆ ξ2q “ T pξ1q ^ T pξ2q, we can consider the multiplication

µ : E2n1pT pξ1qq b E
2n2pT pξ2qq Ñ E2pn1`n2qpT pξ1q ^ T pξ2qq

Consider u “ µpu1, u2q. Let’s show this is a Thom class. We see that @a P X ˆ Y ,
a “ pb, b1q. We thus have the following diagram.

S2pn1`n2q T pξ1 ˆ ξ2q

S2n1 ^ S2n2 T pξ1q ^ T pξ2q

//T pιaq

//T pιbq ^ T pιb1q

Therefore,
T pιaq

˚u “
`

T pιbq, T pιb1q
˘˚
µpu1, u2q

“ µpT pιbq
˚u1, T pιb1q

˚u2q

“ µpε1δn1 , ε2δn2q

“ εδn1`n2

l 4.1.14
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Now, let’s show a very powerful theorem. It can be seen as a generalisation of the suspension
rule for cohomology.

Theorem 4.1.15 (Thom-Dold isomorphism).
Let E be a ring module and ξ be a E-orientable n dimensional vector bundle on X P ObpCWq

with Thom class u. Then, using the following equivalences and functions

• Dpξq „Hom X

• T pξq “ Dpξq{Spξq „Hom Dpξq Y C
`

Spξq
˘

• ∆ : X Y CAÑ X ^ pX Y CAq

we construct @k P Z the morphism:

Ψ : EkpX`q “ Ek
`

Dpξq`
˘ µp´,uq
ÝÝÝÝÑ Ek`2n

`

Dpξq` ^ T pξq
˘ ∆˚
ÝÝÑ Ek`2npT pξqq

We name Ψ the Thom-Dolt isomorphism and as its name induce, it is an isomorphism

Ψ : EkpX`q – Ek`2npT pξqq.6

ras Ñ ra ! us

Proof of Theorem 4.1.15:

1. First, suppose that ξ “ εnCpXq. Then, T pξq “ X` ^ S2n
R and Ψ is given by

Ψ : EkpXq Ñ Ek`2npX` ^ S2n
R q

Ψpfq “ µpf, T pιq˚uq

But this is given by the following diagram:

EkpX`q Ek`2npX` ^ S2n
R q

EkpX` ^ S0
Rq Ek`2npX` ^ S2n

R q

//Ψ

µp´, 1q

idX` ^ σ

µp´, εq

Thus, Ψ is an isomorphism.

6It is usually found in literature using unreduced cohomology on left and reduced cohomology in the right.
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2. Now, let A,B be open subsets of X, ξA “ ι˚Apξq, ξB “ ι˚Bpξq, ξX “ ι˚AXBpξq, ξY “ ι˚AYBpξq.
They all have Thom space and class. We now suppose that the Thom isomorphism works
for ξA, ξB and ξX. Using the following cofibre sequence

pAXBq`
ι
ÝÝÑ A` _B`

pidA,idBq
ÝÝÝÝÝÝÑ pAYBq`

we get, using 2.1.41 the Mayer-Vietoris long exact sequence for cohomology:

Ek
`

pAXBq`
˘

Ð EkpA`q‘EkpB`q Ð Ek
`

pAYBq`
˘

Ð Ek´1
`

pAXBq`
˘

Ð Ek´1pA`q‘Ek´1pB`q

It works similarly for Thom space, that form a cofibre sequence

T pξXq Ñ T pξAq _ T pξBq Ñ T pξYq

Thus, we have the following commutative diagram:

EkppAXBq`q EkpA`q ‘ EkpB`q EkppAYBq`q ¨ ¨ ¨

Ek`2npT pξXqq Ek`2npT pξAqq ‘ E
k`2npT pξBqq Ek`2npT pξYqq ¨ ¨ ¨

¨ ¨ ¨ EkppAYBq`q Ek´1ppAXBq`q Ek´1pA`q ‘ Ek´1pB`q

¨ ¨ ¨ Ek`2npT pξYqq Ek´1`2npT pξXqq Ek´1`2npT pξAqq ‘ E
k´1`2npT pξBqq

oo oo oo

oo oo oo

oo oo oo

oo oo oo

��

Ψ

��

Ψ‘Ψ

��

Ψ

��

Ψ

��

Ψ

��

Ψ‘Ψ

Using 5-Lemma, we get that

Ψ : EkpAYBq – Ek`2npT pξYqq

3. Lets now use the previous 2 points with the trivial covering tUαu of X. If there are only
finitely many such open, our proof is done. Issues occurs if they are infinitely many. To
solve this problem, because X is a paracompact, we can assume that tUαu is countable.
Then consider the open Vn “ Y

n
i“0Un, with ξVn “ p´1pVnq. Using the previous 2 points,

tVnu follows the Thom-Dolt isomorphism.

Because
Ť

nPN Vn “ X, using 1.4.21, we get the following commutative diagram:
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0 lim1
mE

kpVmq EkpXq limmE
kpVmq 0

0 lim1
mE

k`2npT pξVmqq EkpT pξqq limmE
k`2npT pξVmqq 0

// // // //

// // // //
��

lim1 Ψ

��

colimΨ

��

Ψ

Thus, using 5-Lemma once again, we get our desired result

Ψ : EkpX`q – Ek`2npT pξqq.

l 4.1.15

Corollary 4.1.16.

Let X P ObpCWq, E be a ring spectrum and let ξ be a E-orientable n complex vector bundle on
X. Then

Ek`2npE:ξq – EkpX`q

with E:ξ the one point compactification on the total space of ξ.

Proof of Corollary 4.1.16: Using Thom-Dolt isomorphism 4.1.15 and 3.1.26. l 4.1.16

Now, the good question to ask ourselves is when do we have Thom class ? We can give a
beginning of answer using the following proposition.

Proposition 4.1.17.
Let E be a ring spectrum. If γn is E-orientable, then any n complex vector bundle is E-orientable.

Proof of Proposition 4.1.17:
Using the fact that γn is the universal bundle 3.1.34, any n complex bundle ξ on X is given by
ξ “ f˚pγnq. Using 4.1.14, we get that ξ is E-oriented.

l 4.1.17
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Thus, the question of whether or not bundles are oriented is not as much a question about
bundle but is a question about E itself. To continue, we will need to define the notion of
complex orientation on ring spectrum.

Definition 4.1.18 (Complex oriented ring spectrum).
Let E be a ring spectrum. We say that it is complex oriented if:

1. Every ξ complex vector bundle has a Thom class uξ.

2. uf˚pξq “ T pfq˚u, given by 4.1.14.

3. uξ1ˆξ2 “ µpuξ1 , uξ2q given by 4.1.14.

We name tuξu a complex orientation on E.

Using universal bundles, we can reduce theses conditions.

Lemma 4.1.19.
Let E be a ring spectrum. It is complex oriented if and only if γn are E-oriented using
un P E

2npMUpnqq such that @i, j P N:

µpui, ujq “ T pmi,jq
˚pui`jq

with T pmi,jq : MUpiq ^MUpjq ÑMUpi` jq.

Proof of Lemma 4.1.19:

• ñ: By definition.

• ð: Because γn are universal bundles using 3.1.34, any n complex vector bundle is of the
form ξ “ f˚pγnq. Thus, we can construct using 4.1.14 a Thom class on ξ, uξ “ T pfq˚un.

Now, we have to check that the latter points of definition 4.1.18 are preserved.

– uf˚pξq “ T pfq˚u: Let ξ1 “ g˚1 pγnq, ξ2 “ g˚2 pγnq such that ξ1 “ f˚pξ2q. Then,
ξ1 “ pg2 ˝ fq

˚pγnq. Using 3.1.34, we get that g1 „Hom g2 ˝ f . Thus,

uξ1 “ T pg1q
˚un “ T pg2 ˝ fq

˚un “ T pfq˚uξ2 .

– uξ1ˆξ2 “ µpuξ1 , uξ2q: Let ξ1 “ g˚1 pγiq be a bundle on X, ξ2 “ g˚2 pγjq be a bundle on
Y . We have that

f˚pγi`jq “ ξ1 ˆ ξ2 “ pg1 ˆ g2q
˚pγi ˆ γjq
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γi ˆ γj “ m˚i,jpγi`jq.

Thus, we have that

uξ1ˆξ2 “ T pfq˚pui`jq

“ T
`

mi,j ˝ g1 ˆ g2

˘˚
pui`jq

“ T pg1 ˆ g2

˘˚
T pmi,jq

˚pui`jq

“ T pg1 ˆ g2

˘˚
µpui, ujq

“ µ
`

T pg1q
˚ui, T pg2q

˚uj
˘

“ µpuξ1 , uξ2q

l 4.1.19

Corollary 4.1.20.
The MU spectrum is complex oriented.

Proof of Corollary 4.1.20:
We take as Thom class for γn

un PMU2npMUpnqq “ rΣ8MUpnq,Σ2nMU s

un “ Σ8idMUpnq

Let’s show that un is indeed a Thom class. We remind ourselves that 1 “ rηs “ rΣ8idS0s. Thus,
δn “ rΣ

8idS2ns. Then, @b P X

T pιbq
˚punq “ rΣ

8idMUpnq ˝ Σ8T pιbqs “ rΣ
8
`

idMUpnq ˝ T pιbq
˘

s “ rΣ8T pιbqs “ rΣ
8idS2ns “ δn.

7

We thus have Thom class.
Now, what is left to show is that µpui, ujq “ T pmi,jq

˚pui`jq. But this comes from the multi-
plicative structure of MU .

µpui, ujq “ T pmi,jq
˚pui ^ ujq “ T pmi,jq

˚pui`jq.

l 4.1.20

7This comes from T pιbq „Hom idS2n because BUpnq is connected. See 4.2.20 to understand why
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Now, let’s add some structure to spectral maps, making them like ring morphisms.

Definition 4.1.21 (Ring spectral maps).
Let pE,mE , ηEq, pF,mF , ηF q be ring spectra. f P SppE,F q is a ring spectral map if the
following diagrams commute up to homotopy

•
E ^ E E

F ^ F F

//
mE

��

f

��

f ^ f

//
mF

•

S

E

F

44ηE

**

ηF
��

f

It is apparent from the definition that being a ring map is conserved by homotopy.

Lemma 4.1.22.
Let E,F be ring spectra, f : E Ñ F be a ring map. Let tuξu be a complex orientation on E.
Then, using f , we can give F a complex orientation.

Proof of Lemma 4.1.22:
Given tuξu, we define the complex orientation on F as

tvξ “ f˚puξqu

We see that vξ is Thom class. Indeed, @b P X:

T pιbq
˚vξ “ T pιbq

˚f˚uξ
“ f˚T pιbq

˚uξ
“ f˚µEpε, δ

E
n q

“ µF pf˚ε, f˚δ
E
n q

“ µF pε
1, δFn q

To see that this form a complex orientation, using 4.1.19, we simply have to show that

µF pvi, vjq “ T pmi,jq
˚pvi`jq.
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But this is because
µF pvi, vjq “ µF pf˚ui, f˚ujq

“ f˚µEpui, ujq
“ f˚T pmi,jq

˚pui`jq
“ T pmi,jq

˚pf˚ui`jq
“ T pmi,jq

˚pvi`jq

l 4.1.22

The last lemma induce in fact a very important property on MU . It fully define complex
orientation.

Theorem 4.1.23 (Universal complex orientation theorem).
Let E be a ring spectrum. There exists a bijection between the followings sets

!

f P rMU,Es| f a ring map
)

–

!

tuξu| tuξu complex orientation on E
)

In particular, E is complex oriented ðñ Df : MU Ñ E, f a ring spectral map.

Proof of Theorem 4.1.23:
We have our first side given by 4.1.22. We name the complex orientation given in 4.1.20 as
tmuξu. We get

!

rf s P HoSppMU,Eq| f a ring map
)

Ñ

!

tuξu| tuξu complex orientation on E
)

f Ñ tf˚muξu

To construct our inverse, we need to see MU under another light, namely,

MU “ colimnΣ´2nΣ8MUpnq

We thus have, by using 2.1.47, that

rMU,Es “ E0pMUq – lim
n
E2npMUpnqq.

with T pjq : Σ2MUpnq ãÑMUpn` 1q inducing

Σ´2nΣ8MUpnq “ Σ´2pn`1qΣ8Σ2MUpnq
Σ´2pn`1qΣ8j
ÝÝÝÝÝÝÝÝÝÑ Σ´2pn`1qΣ8MUpn` 1q

Now consider un. We are in the following situation

un P E
2npMUpnqq “ rΣ8MUpnq,Σ2nEs “ rΣ´2nΣ8MUpnq, Es

Furthermore, we have that by definition rT pjq˚un`1s “ ruγn‘εs “ rΣ
2uns. This mean that

un`1 ˝ Σ´2pn`1qΣ8T pjq „Hom Σ2un
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Thus, all our maps are compatible with each others up to homotopy. Using homotopy extension
for spectra 2.1.36 and by operating similarly to what we did in 2.2.17, we construct

u : MU Ñ E

u “ limnu
1
n, with u1n „Hom un

Now, to see that u is a ring map. This comes directly from the fact that

mEpui ^ ujq “ µEpui, ujq “ T pmi,jq
˚pui`jq “ ui`j ˝ T pmi,jq

Thus,
mEpu^ uq “ limi,jmEpui, ujq “ limi,jui`j ˝ T pmi,jq “ u ˝mMU .

rηEs “ 1E “ ru0s ñ u ˝ ηMU “ ru0 ˝ Σ8idS0s “ ru0s.

We therefore get

!

rf s P HoSppMU,Eq| f a ring map
)

Ð

!

tuξu| tuξu complex orientation on E
)

u “ limnu
1
n Ð tuξu.

We now have to see that those maps are mutual inverses: To do so, we see that, using 4.1.19, it
is sufficient to work on tunu.

u˚pmunq “ ru ˝ Σ8idMUpnqs “ runs

limnf˚pmunq “ limnrf ˝ Σ´2nΣ8idMUpnqs “ rf ˝ limnΣ´2nΣ8idMUpnqs “ rf ˝ idMU s “ rf s.

l 4.1.23

Example 4.1.24.
The following spectra are complex oriented:

• MU .

• HR, with R any ring. (See for example [AA74]).

• S isn’t complex oriented, otherwise using η, we would have that every ring spectrum is
complex oriented.
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4.2 Computation of cohomology of MU

Our goal in this section is to compute the cohomology of MU in complex oriented cohomology,
a work harder than it appears at first glance. What we know is that

@k, γ0,k “ t˚u ñ T pγ0,kq “ S0 using 3.1.26

Thus,MUp0q “ colimkT pγ0,kq “ S0

EipMUp0qq “ π´ipEq.

4.2.1 Computation of CP k

Proposition 4.2.1.
Let γ1,k be the tautological line bundle on CP k. Then :

T pγ1,kq – CP k`1

Proof of Proposition 4.2.1:
To prove this isomorphism, consider rek`2s P CP k`1. We construct the following map:

ϕ : γ1,k Ñ CP k`1ztek`2u

ϕprxs, vq “ rx` ă v, x ą ek`2s

This map is a well defined. Indeed, if x “ δy, then

ϕprxs, vq “ rδy` ă v, δy ą ek`2s “ rδpy` ă v, y ą ek`2qs “ ry` ă v, y ą ek`2s “ ϕprys, vq.

ϕ is in fact an homeomorphism with inverse continuous map

ϕ´1 : CP k`1ztek`2u Ñ γ1,k

ϕ´1prysq “ prxs,
ă y, ek`2 ą

ă x, x ą
xq

with x “ y´ ă y, ek`2 ą ek`2.
But now, we have using 3.1.26 that

T pγ1,kq “ γ:1,k – pCP
k`1ztek`1uq

: – CP k`1.

The later isomorphism comes from the fact that CP k`1 is compact Hausdorff. l 4.2.1
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Corollary 4.2.2.

CP 1 – T pγ1,0q “ T pεCp˚qq – S2
R

We can now compute homotopy of CP k.

Lemma 4.2.3.
Let E be a complex oriented ring spectrum. Then:

EipCP kq –
k
à

j“1

πi´2jpEq for E˚ reduced

EipCP kq –
k
à

j“0

πi´2jpEq for E˚ unreduced

Proof of Lemma 4.2.3:
First, using 1.3.7, we have that for

EipX`q – EipXq ‘ EipS0q.

Now, let’s show our formula by induction using Thom-Dolt isomorphism 4.1.15:

• k “ 1:
EipCP 1q “ EipS2q – Ei´2pS0q “ πi´2pEq

• k ą 1.
EipCP k`1q – Ei´2ppCP kq`q

– Ei´2ppCP kqq ‘ Ei´2pS0q

–
Àk

j“1 πi´2pj`1qpEq ‘ πi´2pEq

–
Àk`1

j“1 πi´2jpEq

l 4.2.3

Corollary 4.2.4.
Let H˚p´, Rq be the standard unreduced cohomology modulo R a ring. Then,

H ipCP k, Rq “
"

R i “ 2n, n ď k
0 otherwise
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Proof of Corollary 4.2.4:
This comes from the fact that πipHRq “ R if i “ 0 and πipHRq “ 0 otherwise. l 4.2.4

Corollary 4.2.5.
Let E be a complex oriented spectrum.

EipMUp1qq – EipCP8, Rq –
8
à

j“1

πi´2jpEq for E˚ reduced

Proof of Corollary 4.2.5:

MUp1q “ colimkT pγ1,kq “ colimkCP k`1 “ CP8

Then, we see that tCPnunPN follows the Mittag-Leffler criterion 1.4.22. Thus

H ipCP8, Rq – colimkH
ipCP k, Rq – colimk

k
à

j“1

πi´2jpEq “
8
à

j“1

πi´2jpEq.

l 4.2.5

This also gives us a structure on the cohomology ring.

Theorem 4.2.6.
Let E be an oriented cohomology

E‚pCP kq – π‚pEqrus{pu` 1q

E‚pCP kq – π‚pEqrus

with u P E2pCP kq being the Thom class given by the orientability of E.

If we have already the abelian group structure, proving the ring structure is quite complex, using
notion of Atiyah-Hirzebruch spectral sequence. The proof can be found in [Ped18], 2.0.4.
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4.2.2 Hurewitz fibrations and Chern class.

Now that we have an idea of how complex it is to compute in the general case, we will restrict
ourselves to computing HZ˚pMUq. To do so, we need to define what are called fibrations.

Definition 4.2.7 (Hurewitz fibrations).
Let E,B P ObpCWq, p P CWpE,Bq. It is called a Hurewitz fibration if @f̃ : Z Ñ E,
such that p ˝ f̃ „Hom g using H, DH̃ : Z ˆ r0, 1s` Ñ E such that H̃0 “ f̃ , p ˝ H̃ “ H. I.e. the
following diagram commute:

Z E

Z ^ r0, 1s` X

//f̃

��

p

��

idˆ 0

//H

::

DH̃

We call F “ p´1px0q the fibre of our Hurewitz fibration.

Example 4.2.8.
Many examples of fibrations can be found in [Swi17], chapter 4.

• Any product B ˆ F
p1
ÝÑ B, using H̃ “ pHpx, tq, p2 ˝ fpxqq.

• Let E
p
ÝÑ B. For f : Z Ñ E, consider H : Z ^ r0, 1s` Ñ B an homotopy of p ˝ f .

Using tUku trivial covering on B, we get an open covering tVk ˆ Iku on Z ^ r0, 1s`. On
any open, we can define by triviality a lift H̃k. Because r0, 1s` is compact, for each y P Z,
DVy ˆ r0, 1s such that we have a lift H̃y on it.

To see this point, we have y ˆ r0, 1s is cover by finitely many open Vk ˆ Ik. By setting
Vy “

Ş

k Vk, we get Vy ˆ r0, 1s. Furthermore, we can merges our lifts H̃k together to get
H̃y.

Now, we have an open cover with lift well defined that. Thus, we can merge everything
together and get H̃.

F Ñ E Ñ B is thus a fibration

• Any quotient group given by a topological group.

H Ñ G
π
ÝÑ G{H

• Path space fibration using PH “ Hom
`

pr0, 1s, 0q, X
˘

and using πpfq “ fp1q

ΩX Ñ PX
π
ÝÑ X
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Theorem 4.2.9.
Let F

ι
ÝÝÑ E

p
ÝÝÑ B with F “ p´1px0q the fibre of our Hurewitz fibration. We have the following

long exact sequence

¨ ¨ ¨ Ñ πnpF q Ñ πnpEq Ñ πnpBq Ñ πn´1pF q Ñ ¨ ¨ ¨

Proof of Theorem 4.2.9:
This comes from the fact that, similarly to cofibre, we have a long sequence where every triple
is a Hurewitz fibration ([Swi17] 4.42, [Hat02] page 409),

¨ ¨ ¨ Ñ ΩF Ñ ΩE Ñ ΩB Ñ F Ñ E Ñ B

Now, consider F Ñ E Ñ B a Hurewitz fibration. Let’s show that

πkpF q
ι˚
ÝÑ πkpEq

p˚
ÝÑ πkpBq

is exact:

• Impι˚q Ď kerpp˚q: By definition, pp ˝ ι ˝ fq “ x0.

• Impι˚q Ě kerpp˚q: Let f : Sk Ñ E such that rp ˝ f s “ 0 using H. Then, by fibration, we
get H̃ : Sk^r0, 1s`, p ˝ H̃ “ H. Let H̃1 “ f̃ . We get that f „Hom f̃ , p ˝ f̃ “ ˚. Therefore,
f̃pSkq Ď F . We have

f̃ : Sk Ñ F

with ι ˝ f̃ „Hom f , proving our point.

l 4.2.9

Now, let’s assume the following technical theorem.

Theorem 4.2.10 (Thom-Gysin sequence).
Let Sn Ñ E Ñ B be an Hurewitz fibration over a simply connected CW complex 8, R be a
commutative ring. Then, Dc P Hn`1pE,Rq such that we get the following long exact sequence:

¨ ¨ ¨HkpB,Rq
p˚
ÝÝÑ HkpE,Rq ÝÝÑ Hk´npB,Rq

c!p´q
ÝÝÝÝÑ Hk`1pB,Rq Ñ ¨ ¨ ¨

Proof given in [Swi17], 15.30.

8This means πipBq “ 0 for i ď n.
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Now that we have those definitions, let’s compute H ipBUpnqq. To do so, let’s first define the
unitary group.

Definition 4.2.11 (Unitary group).
We define the unitary group Upnq Ă GLnpCq:

Upnq “
!

M P GLnpCq| MM˚ “ idn

)

with M˚ being the Hermitian transpose.

Proposition 4.2.12.

GC
n,k – Upn` kq

M

`

Upnq ˆ Upkq
˘

We thus get two Hurewitz fibrations,

Upnq Ñ Upn` kq{Upkq Ñ GC
n,k

Upkq Ñ Upn` kq Ñ Upn` kq{Upkq “ VnpCn`kq

We name VnpCn`kq the Stiefel manifold.

Proof of Proposition 4.2.12:
To see this isomorphism, we have that any k vector space in Cn`k is given by a orthonormal
basis, i.e. an element of Upn` kq. But the vector space is unchanged by any modification of its
basis or its complementary space, i.e. a linear action on Upnq ˆ Upkq. Thus,

GC
n,k – Upn` kq

M

`

Upnq ˆ Upkq
˘

The fact that we have Hurewitz fibration is a consequence of 4.2.8.
l 4.2.12

Now, using our fibrations, let’s find some useful results on unitary group.

Proposition 4.2.13.
Let N P N. @n ď N , i : Upnq ãÑ UpNq induce an isomorphism

i˚ : πj
`

Upnq
˘

– πj
`

UpNq
˘

for j ă 2n.
Furthermore, i˚ : π2n

`

Upnq
˘

� π2n

`

UpNq
˘

.
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Proof of Proposition 4.2.13:
wlog, we consider N “ n` 1. Then, we have the following Hurewitz fibration

Upnq Ñ Upn` 1q Ñ Upn` 1q{Upnq “ Sn`1
C “ S2n`1

R

Thus, using 4.2.9, we get that the l.e.s.

¨ ¨ ¨ Ñ πj`1pS
2n`1q Ñ πjpUpnqq

i˚
ÝÝÑ πjpUpn` 1qq Ñ πjpS

2n`jq Ñ ¨ ¨ ¨

For j ă 2n, πj
`

Upnq
˘

– πj
`

Upn` 1q
˘

and π2n

`

Upnq
˘

� π2n

`

Upn` 1q
˘

l 4.2.13

Those results have consequences on the Stiefel manifold.

Proposition 4.2.14.

πi
`

VnpCn`kq
˘

“ 0

for i ă 2k.

Proof of Proposition 4.2.14:
Using the following Hurewitz fibration

Upkq
i
ÝÝÑ Upn` kq Ñ VnpCn`kq

we get using 4.2.9 the following long exact sequence

¨ ¨ ¨ Ñ πj`1pUpkqq
i˚
ÝÝÝ� πj`1pUpn` kqq Ñ πj`1pVnpCn`kq Ñ πjpUpkqq

i˚
ãÝÑ πjpUpk ` nqq Ñ ¨ ¨ ¨

Thus, for j ă 2k, using 4.2.13, we get that

πjpVnpCn`kqq “ 0.

l 4.2.14

Corollary 4.2.15.

πipG
C
n,kq – πi´1pUpnqq

for i ă 2k.
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Proof of Corollary 4.2.15:
Using the Hurewitz fibration Upnq Ñ VnpCn`kq Ñ GC

n,k and 4.2.9, we get the long exact sequence

¨ ¨ ¨ Ñ πjpVnpCn`kqq ÝÑ πjpG
C
n`kq Ñ πj´1pUpnqq Ñ πj´1pVnpCn`kqq Ñ ¨ ¨ ¨

Because πipVnpCn`kqq “ 0, i ă 2k we get πipG
C
n,kq – πi´1pUpnqq. l 4.2.15

Corollary 4.2.16.
Let EUpnq “ colimkVnpCn`kq.

EUpnq is contractible.

Proof of Corollary 4.2.16:
This comes from the fact that πip colimkXkq – colimkπipXkq by 1.4.19. Thus @i P N, because
πipVnpCn`kqq “ 0 for i ă 2k, we get tat πipEUpnqq “ 0. Thus,

ι˚ : πip˚q – πipEUpnqq

Thus, ι is a weak homotopy equivalence and using Whitehead theorem 1.4.17, it is in fact an
homotopy equivalence.

l 4.2.16

Now, let’s show an interesting result that put greater light on why BU is called BU .

Proposition 4.2.17.
Let F Ñ E Ñ B be an Hurewitz fibration with E contractible set. Then, there exists a weak
homotopy equivalence F Ñ ΩB.

Proof of Proposition 4.2.17:
To do so, we consider PB, the set of all paths ν in B from any x to x0 the base point. By
definition, PB is contractible.
Because E is contractible, consider Ht the homotopy between idE and ˚. We use it to define a
morphism

q : E Ñ PB

qpxq “ ppHtpxqq

By restriction, because F “ p´1px0q, we get that q|F : F Ñ ΩB. We have that by 4.2.8 that
ΩB Ñ PB Ñ B is a Hurewitz fibration. Thus, we have the following diagram:

F E B

ΩB PB B

// //p

// //
��

q|F

��

q
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Using 4.2.9 twice, we get the following commutative diagram:

πj`1pEq πj`1pBq πjpF q πjpEq πjpBq

πj`1pPEq πj`1pBq πjpΩBq πjpPEq πjpBq

// // // //

// // // //
��

q˚

��

id˚

��

pq|F q˚

��

q˚

��

id˚

The equality πjpEq – πjpPEq being because they are both 0. Using Five lemma, we get that
q|F is a weak homotopy equivalence. l 4.2.17

Corollary 4.2.18.

ΩBUpnq „Hom Upnq.

Proof of Corollary 4.2.18:
Going to colimit, we get the following Hurewitz fibration

Upnq Ñ EUpnq Ñ BUpnq

Thus, using 4.2.17, we get a weak homotopy equivalence that is just an homotopy equivalence
using Whitehead thorem 1.4.17. l 4.2.18

Now, let’s sow this important technical lemma.

Lemma 4.2.19.
There exists the following Hurewitz fibration on BUpnq:

S2n`1
R Ñ BUpnq Ñ BUpn` 1q.

Proof of Lemma 4.2.19:

To prove this lemma, Let ČBUpnq “ EUpn` 1q{Upnq. We have the following diagram:

Upnq EUpnq BUpnq

Upnq EUpn` 1q ČBUpnq

// //

// //
�� ��
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The two rows are Hurewitz fibrations. Using 4.2.9, we get the following commutative diagram:

πj`1pUpnqq πj`1pEUpnqq πjpBUpnqq πjpUpnqq πjpEUpnqq

πj`1pUpnqq πj`1pEUpn` 1qq πjpČBUpnqq πjpUpnqq πjpEUpn` 1qq

// // // //

// // // //
��

id˚

�� �� ��

id˚

��

Thus, using Five lemma and 1.4.17, we get that BUpnq „Hom ČBUpnq.
Now, we simply have the following Hurewitz fibration

Upn` 1q{Upnq Ñ EUpn` 1q{Upnq Ñ EUpn` 1q{Upn` 1q

S2n`1
R Ñ ČBUpnq Ñ BUpn` 1q

l 4.2.19

Having this lemma and Thom-Gysin sequence theorem 4.2.10, we now can compute the structure
of H˚pBUpnqq using Chern class.

Theorem 4.2.20 (Chern class theorem).
Let H be the standard unreduced cohomology.

H‚pBUpnqq – Zrcpnq1 , ¨ ¨ ¨ , cpnqn s

with ci P H
2ipBUpnqq beeing Chern class such that:

1. c
pnq
0 “ 1

2. c
p1q
1 is given by the orientation of H2pCP8q, using the fact that MUp1q “ BUp1q.

3. using i : BUpnq Ñ BUpn` 1q, we get i˚c
pn`1q
j “ c

pnq
j .

4. using m : BUpnq ˆBUpmq Ñ BUpn`mq, we get c
pn`mq
k “

ř

i`j“k c
pnq
i Y c

pmq
j .

Proof of Theorem 4.2.20:
We will prove this theorem by induction: n “ 1 given by 4.2.6.

Suppose H‚pBUpnqq – Zrcpnq1 , ¨ ¨ ¨ , c
pnq
n s. Then, let’s consider the n` 1 case. We have by 4.2.19

the following Hurewitz fibration:

S2n`1
R Ñ BUpnq Ñ BUpn` 1q
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Using Thom-Gysin sequence 4.2.10, we get that the following long exact

¨ ¨ ¨ Ñ HkpBUpn` 1qq Ñ HkpBUpnqq Ñ Hk´2n´1pBUpn` 1qq Ñ Hk`1pBUpn` 1qq Ñ ¨ ¨ ¨

Let’s use it to compute some cohomology:

• By nature of H˚p´q and because BUpnq is connected, we get that @n P N`,

H´npBUpkqq “ 0

H0pBUpkqq “ Z

To see that BUpnq is connected, we use 4.2.13 and 0 “ π0pS
1q “ π0pUp1qq – π0pUpnqq.

Then, by using 4.2.9, we have

π0pUpnqq Ñ π0pEUpnqq Ñ π0pBUpnqq Ñ 0

Thus, π0pBUpnqq – π0pEUpnqq “ 0.

Note that, using 4.2.18, we get that

π1pBUpnqq – π0pUpnqq “ 0

• 2k ` 1 ă 2pn` 1q:

¨ ¨ ¨ Ñ H2kpBUpnqq Ñ H2k´2n´1pBUpn`1qq Ñ H2k`1pBUpn`1qq Ñ H2k`1pBUpnqq Ñ ¨ ¨ ¨

Using the fact that, by induction, H2k`1´2n´1pBUpn` 1qq “ H2k`1pBUpnqq “ 0, we get
that

H2k`1pBUpn` 1qq “ 0

• 2k ` 1 ą 2pn` 1q: Consider

¨ ¨ ¨ Ñ H2k´2n´1pBUpn` 1qq Ñ H2k`1pBUpn` 1qq Ñ H2k`1pBUpnqq Ñ ¨ ¨ ¨

By induction, H2k`1pBUpnqq “ 0. Thus,

H2k´2n´1pBUpn` 1qq� H2k`1pBUpn` 1qq.

But then, using another induction, we can guaranty that H2k´2n´1pBUpn`1qq “ 0. Thus
H2k`1pBUpn` 1qq “ 0

• 2k: Consider the following exact sequence

¨ ¨ ¨ Ñ H2k´1
pBUpnqq Ñ H2k´2pn`1q

pBUpn`1qq Ñ H2k
pBUpn`1qq Ñ H2k

pBUpnqq Ñ H2k´2n´1
pBUpn`1qq Ñ ¨ ¨ ¨

Using H2k´1pBUpnqq “ H2k´2n´1pBUpn` 1qq “ 0, we get for all k the s.e.s.

0 Ñ H2k´2pn`1qpBUpn` 1qq Ñ H2kpBUpn` 1qq Ñ H2kpBUpnqq Ñ 0
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– If k ă n` 1, get

0 Ñ 0 Ñ H2kpBUpn` 1qq
i˚
ÝÝÑ pZrc1, ¨ ¨ ¨ , cnsq2k Ñ 0

Thus
H2kpBUpn` 1qq – Zrc1, ¨ ¨ ¨ , cnsq2k – pZrc1, ¨ ¨ ¨ , cn`1sq2k

– If k “ n` 1: We are in the following representation.

0 Ñ Z cn`1!´
ÝÝÝÝÝÑ H2pn`1qpBUpn` 1qq

i˚
ÝÝÑ pZrc1, ¨ ¨ ¨ , cnsq2pn`1q Ñ 0

Using the fact that Z and pZrc1, ¨ ¨ ¨ , cnsq2k can be seen as free Z modules, we get
that H2kpBUpn` 1qq split and is therefore free. Thus,

H2pn`1qpBUpn` 1qq – pZrc1, ¨ ¨ ¨ , cnsq2pn`1q ‘ Zpcn`1q

H2pn`1qpBUpn` 1qq – pZrc1, ¨ ¨ ¨ , cn`1sq2pn`1q

– If k ą n` 1. We get that

0 Ñ pZrc1, ¨ ¨ ¨ , cn`1sq2k´2pn`1q
cn`1!´
ÝÝÝÝÝÑ H2kpBUpn` 1qq

i˚
ÝÝÑ pZrc1, ¨ ¨ ¨ , cnsq2k Ñ 0

It also split in

H2npBUpn` 1qq – pZrc1, ¨ ¨ ¨ , cnsq2k ‘
´

cn`1 ! pZrc1, ¨ ¨ ¨ , cn`1sq2k´2pn`1q

¯

H2npBUpn` 1qq – pZrc1, ¨ ¨ ¨ , cn`1sq2n

Thus, we get our desired result

H‚pBUpnqq – Zrc1, ¨ ¨ ¨ , cns

l 4.2.20

Example 4.2.21 (Tabular of unreduced cohomology of BU).

H0 H2 H4 H6 H8 H10 H12 H14 H16 H18 H20 H22 H24 H26 H28

BUp0q Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BUp1q Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
BUp2q Z Z Z2 Z2 Z3 Z3 Z4 Z4 Z5 Z5 Z6 Z6 Z7 Z7 Z8

BUp3q Z Z Z2 Z3 Z4 Z5 Z7 Z8 Z10 Z12 Z14 Z16 Z19 Z21 Z24

BUp4q Z Z Z2 Z3 Z5 Z6 Z9 Z11 Z15 Z18 Z23 Z27 Z34 Z39 Z47

BUp5q Z Z Z2 Z3 Z5 Z7 Z10 Z13 Z18 Z23 Z30 Z37 Z47 Z57 Z70

BUp6q Z Z Z2 Z3 Z5 Z7 Z11 Z14 Z20 Z26 Z35 Z44 Z58 Z71 Z90
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This tabular is given by the following recursive formula H2kpBUpnqq “ Zαnpkq with

αnpkq “

$

&

%

αnpk ´ nq ` αn´1pkq
δ0,k, n “ 0
0, k ă 0

Corollary 4.2.22.
Let HZ be the standard reduced cohomology. Then

HZkpMUpnqq “ Hk´2npBUpnqq

Proof of Corollary 4.2.26:
Using Thom-Dolt isomorphism 4.1.15.

l 4.2.26

Example 4.2.23 (Tabular of reduced cohomology of MU).

HZ0 HZ2 HZ4 HZ6 HZ8 HZ10 HZ12 HZ14 HZ16 HZ18 HZ20

MUp0q Z 0 0 0 0 0 0 0 0 0 0
MUp1q 0 Z Z Z Z Z Z Z Z Z Z
MUp2q 0 0 Z Z2 Z2 Z3 Z3 Z4 Z4 Z5 Z5

MUp3q 0 0 0 Z Z2 Z3 Z4 Z5 Z7 Z8 Z10

MUp4q 0 0 0 0 Z Z2 Z3 Z5 Z6 Z9 Z11

MUp5q 0 0 0 0 0 Z Z2 Z3 Z5 Z7 Z10

MUp6q 0 0 0 0 0 0 Z Z2 Z3 Z5 Z7

We can in fact generalised Chern class on any complex oriented ring spectrum.

Theorem 4.2.24 (Conner-Floyd Chern class).
Let E be a complex oriented ring spectrum. We get that

E‚pBUpnqq – π‚pEqrc
E
1 , ¨ ¨ ¨ , c

E
n s

with cEi P E2ipBUpnqq the Conner-Floyd Chern class, having similar properties than the
Chern class.
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The proof is using Atiyah-Hirzebuch spectral sequence and is thus too complex for the scope of
this projet, but a proof can be found in [CF06].

Corollary 4.2.25.
Let E be a complex oriented ring spectrum.

EkpMUpnqq – Ek´2npBUpnqq ‘ Ek´2npS0q

Proof of Corollary 4.2.25:
By Thom-Dolt isomorphism 4.1.15.

l 4.2.25

Let’s now compute the cohomology of the MU spectrum using the following definition 2.1.47.

Proposition 4.2.26.
Let E be a complex oriented ring spectrum. We get

EkpMUq – limn E
kpBUpnq`q.

Proof of Proposition 4.2.26:
Using the fact that MU´k “ ˚, we get

EkpMUq “ limk E
k`2npMUpnqq

– limk E
kpBUpnq`q9

l 4.2.26

Proposition 4.2.27.

H2k`1pMUq “ 0

H2kpMUq – H2kpBUpkqq

Proof of Proposition 4.2.27:
This comes from the fact that H2n`1pBUpnqq “ 0.
Otherwise, we have by induction on t that αn`tpnq “ αnpnq, with αnpkq given in 4.2.21. Thus,

limnH
2kpBUpnqq “ limn Zαnpkq “ Zαkpkq “ H2kpBUpkqq.

l 4.2.27

9Using 4.2.25
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Appendix A

To go further in the study of MU

In this section, we will state other interesting results about MU that we don’t have time to
study in details in this paper.

A.1 Computing π˚pMUq

First, let’s have a look at π˚pMUq. If we won’t prove its full structure, we will give a first
intuition, using complex cobordism that we proved in 3.2.26.
To do so, consider the following lemma

Lemma A.1.1.
Let X P ObpCWq be compact, A be an abelian group. Then

HkpX,Aq “ 0 except on finitely many cases.

Furthermore,
ř

kPN dim HkpX,F2q ă 8.

Proof of Lemma A.1.1:
Because X is compact, it is a finite cell complex. Using the cofibre sequence on the skeleton

Xk Ñ Xk`1 Ñ _
nk
i“1S

k`1
i

we get the l.e.s

¨ ¨ ¨ Ð H i`1p_
nk
j“1S

k`1
j q Ð H ipXk, Aq Ð H ipXk`1, Aq Ð H ip_

nk
j“1S

k`1
j , Aq Ð ¨ ¨ ¨

Let us show by recursively that @i ą k,H ipXk, Rq “ 0. Because X0 “ _jS
0
j , the initiation is

true. Then, if we assume @i ą k,H ipXk, Rq “ 0, we get that

0 Ð H ipXk, Rq Ð H ipXk`1, Rq Ð 0
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for i ą k ` 1. Therefore, using our recurrence hypothesis, we get that H ipXk`1, Rq “ 0, i ą k.
Thus, because X compact, X “ Xk. Thus, H ipX,Rq “ 0 for i ą k.

Now, to show that
ř

kPN dimHkpX,F2q ă 8, by induction.

HkpX0, Rq “ Hkp_jS
0
j ,F2q “ Fj2 if k “ 0, 0 otherwise. Thus,

ř

kPN dimHkpX0,F2q “ j ă 8
By the long exact sequence, we have

0 Ð Hk`1pXk`1,F2q Ð Fnk2 Ð HkpXk,F2q Ð HkpXk`1,F2q Ð 0

Thus, dimHk`1pXk`1,F2q ă nk and dimHkpXk`1,F2q ă dimHkpXk,F2q.
Furthermore, HkpXk`1,F2q – HkpXk,F2q, i ‰ k, k ` 1. Thus

ÿ

kPN
dimHkpXk`1,F2q “ j ă 8

l A.1.1

We now can define what is called the Euler characteristic.

Definition A.1.2 (Euler characteristic mod 2).
Let X P ObpCWq be compact. Using previous lemma A.1.1, we define the Euler characteristic
(mod 2) as:

χ2pXq “
ÿ

kPN
p´1qk dim

`

HkpX`,F2q
˘

.

Example A.1.3.
χ2pS

2n`1
R q “ 0

χ2pS
2n
R q “ 2

χ2pCP kq “ k ` 1

Euler characteristic has some good properties

Proposition A.1.4.
Let X,Y P ObpCWq be compacts. Then,

χ2pX _ Y q “ χ2pXq ` χ2pY q

χ2pX ^ Y q “ χ2pXq.χ2pY q
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Proof of Proposition A.1.4:

χ2pX _ Y q “
ř

kPNp´1qi dim
`

HkpX \ Y,F2q
˘

“
ř

kPNp´1qi dim
´

`

HkpX,F2q
˘

ˆ
`

HkpY,F2q
˘

¯

“ χ2pXq ` χ2pY q

χ2pX ^ Y q “
ř

kPNp´1qk dim
`

HkpX ˆ Y,F2q
˘

“
ř

kPNp´1qk dim
´

ř

i`j“kH
ipX,F2q bH

jpY,F2q

¯

1

“
ř

kPN
ř

i`j“kp´1qip´1qj dim
`

H ipX,F2q
˘

.dim
`

HjpY,F2q
˘

“ χ2pXq.χ2pY q

l A.1.4

Lemma A.1.5.
Let X,Y, Z P ObpCWq be compact spaces such that X Ñ Y Ñ Z is a cofibre sequence. Then,
the Euler characteristic is defined and

χ2pY q “ χ2pXq ` χ2pZq

Proof of Lemma A.1.5:
Consider the long exact sequence for cohomology induced by the cofibre sequence.

¨ ¨ ¨ Ð Hk`1pX`,F2q
Bk
ÐÝ HkpZ`,F2q

ak
ÐÝ HkpY `,F2q

bk
ÐÝ HkpX`,F2q

Bk´1
ÐÝÝÝ Hk´1pZ`,F2q Ð ¨ ¨ ¨

Then, because abelian group are F2-linear group, we get, using exactness that:

dkZ “ dimHkpZ`,F2q “ dimpBkq ` dimpakq

dkY “ dimHkpY `,F2q “ dimpakq ` dimpbkq

dkX “ dimHkpX`,F2q “ dimpakq ` dimpBk´1q

Thus, dkX ` d
k
Z ´ d

k
Y “ dimpBkq ` dimpBk´1q

Therefore, we get

χ2pXq ` χ2pZq ´ χ2pY q “
ř

kPNp´1qk
´

dkX ` d
k
Z ´ d

k
Y

¯

“
ř

kPNp´1qkpdimpBkq ` dimpBk´1qq

“ 0

We get to zero because dimpB0q “ 0 and Bk become zero at some point. l A.1.5

1This is given by Kunneth theorem which can be found in [Swi17], 13.13.
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Corollary A.1.6.
Let X,Y be compact CW complexes.

χ2pX Y Y q “ χ2pXq ` χ2pY q ´ χ2pX X Y q

Proof of Corollary A.1.6:
This is because we have the following cofibre:

pX X Y q` Ñ X` _ Y ` Ñ pX Y Y q`

l A.1.6

Now, let us assume the following theorem

Theorem A.1.7 (Poincare duality).
Let M be a compact n manifold without boundary. @k

HkpM,F2q – Hn´kpM,F2q

Furthermore, using universal coefficient theorem, we get that

dimHkpM,F2q “ dimHn´kpM,F2q

Proof given in [Swi17], 14.13.

This induce the following idea.

Corollary A.1.8.
Let M be a compact odd dimensional manifold without boundary. Then

χ2pMq “ 0

Proof of Corollary A.1.8:
Because M is a compact manifold, we have that HkpM,F2q ‰ 0 ñ k “ 0, ¨ ¨ ¨ , n. Now, we have
that

2χ2pMq “
řn
k“0p´1qk dim

`

HkpM,F2q
˘

`
řn
k“0p´1qk dim

`

Hn´kpM,F2q
˘

“
řn
k“0p´1qk

´

dim
`

HkpM,F2q
˘

´ dim
`

HkpM,F2q
˘

¯

“ 0
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l A.1.8

Using this corollary, we can get the following result on complex projective spaces.

Lemma A.1.9.
CP 2k is no boundary of a compact manifold

Proof of Lemma A.1.9:

• Suppose CP 2k “ BW with W a compact 2k ` 1 manifold with boundary. Then, consider
W#BWW , a compact 2k ` 1 manifold without boundary. We get that

0 “ χ2pW#BWW q
“ 2χ2pMq ´ χ2pCP 2kq

“ 2χ2pMq ´ 2k ` 1

Thus, 0 is the sum of an odd and even number, which is a contradiction.

l A.1.9

Corollary A.1.10.
@k P N, π2kpMUq ‰ 0

Proof of Corollary A.1.10:
Using 3.2.26, we have that π2npMUq – Ω2np˚q.
Now, we have rCP 2ks P Ω2np˚q and rCP 2ks ‰ 0 using A.1.9. Thus, Ω2np˚q ‰ 0.

l A.1.10

In fact, πnpMUq has the following structure

Theorem A.1.11 (Milnor-Novikov theorem).

π‚pMUq – Zrb1, ¨ ¨ ¨ bn, ¨ ¨ ¨ s

with bi P π2ipMUq, bi “ ΨpCP iq.

This theorem is proven in [Rav03], Theorem 3.1.5.
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A.2 Nilpotence theorem

Another very important property of the spectrum MU is the nilpotence theorem. It is in fact
central in all further study of spectral homotopy theory.

Definition A.2.1 (Hurewicz map).
Let R P ObpSpq and let E be a ring spectrum. Then, we define the Hurewicz map:

h : πkpRq Ñ EkpRq

πkpRq – πkpR^ Sq idR^η
ÝÝÝÝÑ πkpR^ Eq “ EkpRq

In fact, this map extend to the homotopy ring.

h : π‚pRq Ñ E‚pRq

Theorem A.2.2 (Nilpotence theorem).
Let R be a ring spectrum. Consider the Hurewicz map

π‚pRq
h
ÝÝÑMU‚pRq

Then, α P π‚pRq is nilpotent to multiplication ðñ hpαq “ 0

Proof in [Rav92], Chapter 9.

Corollary A.2.3 (Nishida).

@α P πnpSq, n ‰ 0, α is nilpotent.

Proof of Corollary A.2.3:
Let x P πnpSq. If n ă 0, then πnpSq “ colimkπn`kpS

kq “ 0. So x “ 0.
Otherwise, we have that x is torsion. Then, hpxq PMU‚pSq is also torsion. But, by using A.1.11

MU‚pSq “ π‚pMUq – Zrb1, ¨ ¨ ¨ bn, ¨ ¨ ¨ s

but it is a torsion free ring. Thus, hpxq “ 0 ñ x nilpotent.
l A.2.3
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